VMD
https://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=VMD
(Linux, MacOS, Windows ...)
module load vmd/1.9.2
AIMALL
http://aim.tkgristmill.com/download/download.html
(Linux, MacOS, Windows)
or on aurora /lunarc/nobackup/projects/snic2019-35-66/Justin/programs/AIMAll/aimstudio.ish
aimall on Aurora
NCIplot
https://www.lct.jussieu.fr/pagesperso/contrera/nciplot.html
on aurora:
export NCIPLOT_HOME=/lunarc/nobackup/projects/snic2019-35-66/Justin/programs/nciplot-master/src_
nciplot_4.0/
nciplot
IGMplot
http://igmplot.univ-reims.fr/download.php
http://igmplot.univ-reims.fr/DOC/doc.pdf
on aurora: /lunarc/nobackup/projects/snic2019-35-66/Justin/programs/IGMPLOT-2.4.2/source/IGMPLOT
igmplot
Does not work currently unless you download the program locally.
dgrid
http://www2.cpfs.mpg.de/~kohout/dgrid_web/download.php
(only Linux)
On aurora /lunarc/nobackup/projects/snic2019-35-66/Justin/programs/DGrid-5.1-2019-09-09/dgrid
dgrid
Input in /lunarc/nobackup/projects/snic2019-35-66/Justin/ed_analyses/input
or /lunarc/nobackup/projects/snic2019-35-66/Ulf/Aim
Quantum Theory of Atoms in Molecules (QTAIM)
The topology of the electron density is analysed by mathematical methods
The first derivative of the electron density is the gradient vector field
Zero of the gradient vector field determines critical points in the electron density
To characterize these critical points the curvature is used.
AIMALL
http://aim.tkgristmill.com/download/download.html
(Linux, MacOS, Windows)
or on aurora /lunarc/nobackup/projects/snic2019-35-66/Justin/programs/AIMAll/aimstudio.ish
aimall on Aurora
Non-covalent interactions (NCI)
Documentation for the program can be found here:
https://www.lct.jussieu.fr/pagesperso/
contrera/nciplot.html
If you want to use the software more extensively, there are several
exercises available on the homepage.
The NCIPlot program can read xyz files, wfn or wfx files.
The
xyz file contains the number of
atoms in the system you want to study and the coordinates of the atoms.
If you read in an xyz file, the program automatically uses promolecular
densities for the calculation.
3
water
O 1.396405 -0.121399 -0.040373
H 1.465873 0.195903 0.874079
H 1.472634 0.685789 -0.573657
Wfn or Wfx files contain information about the wavefunction and can
be used to read information from a previous quantum chemical calculation.
The wfn format is older and it is limited to 999 atoms. Also if you are working with effective
core potentials, the wfx format is better.
NCIplot
https://www.lct.jussieu.fr/pagesperso/contrera/nciplot.html
on aurora:
export NCIPLOT_HOME=/lunarc/nobackup/projects/snic2019-35-66/Justin/programs/nciplot-master/src_
nciplot_4.0/
nciplot
Looking at NCI-ingegral values
IGMplot
http://igmplot.univ-reims.fr/download.php
http://igmplot.univ-reims.fr/DOC/doc.pdf
on aurora: /lunarc/nobackup/projects/snic2019-35-66/Justin/programs/IGMPLOT-2.4.2/source/IGMPLOT
igmplot
Does not work currently unless you download the program locally.
The IGMPlot program can process xyz files (then it uses the promolecular approximation)
and wfn files (to use the wavefunction from a quantum chemical calculation).
Documentation for the IGMPlot program can be found here:
http://igmplot.univ-reims.fr/
DOC/doc.pdf
The software itself comes with a number of tests, which can be a very useful starting
point, many of them are also the examples shown in the documentation.
Without the radius keyword, the program is still working, but the automatically chosen cube size is too small to visualise all isosurfaces.
IGM detects intermolecular interactions only if two separate xyz files are given as input. Each of the two xyz files contains one water molecule each.
Run the program by
igmplot water.inp > water.out
Like NCI, with IGM you can visualise 3D and 2D plots.
Load the igm.vmd file as visualisation state in vmd.
Enable the visualisation of the intramolecular interactions with double clicking on the
red D in the main window.
For the 2D plots, use the gnuplot
script igm water.gp. This will provide you with two png files, one for the inter- and one for the
intramolecular interactions.
# Gnuplot script for IGM
set terminal pngcairo enhanced
set encoding iso_8859_1
set output 'intra.png'
set key
set ylabel '{/Symbol d}g(a.u.)' font "Helvetica, 20"
set xlabel 'sign({/Symbol l}_2){/Symbol r}(a.u.)' font "Helvetica, 20"
set border lw 2
set yrange [0.0:0.5]
plot 'out-igm.dat' u 1:3 w p lc rgb "blue" title "dg intra"
set terminal pngcairo enhanced
set encoding iso_8859_1
set output 'inter.png'
set key
set ylabel '{/Symbol d}g(a.u.)' font "Helvetica, 20"
set xlabel 'sign({/Symbol l}_2){/Symbol r}(a.u.)' font "Helvetica, 20"
set border lw 2
set yrange [0.0:0.1]
plot 'out-igm.dat' u 1:4 w p lc rgb "blue" title "dg inter"
Electron Localization Function (ELF)
Electron Localisability Indicator (ELI) is a real space descriptor of the electron localisability.
dgrid
http://www2.cpfs.mpg.de/~kohout/dgrid_web/download.php
(only Linux)
On aurora /lunarc/nobackup/projects/snic2019-35-66/Justin/programs/DGrid-5.1-2019-09-09/dgrid
dgrid
IELI-D, regions with high values have a high electron localisation like atoms, bonds and lone pairs.
In the definition of ELI-D there is no separation between α- and β-spin-electrons.
Convert a FChk file to a g09 file:
dgrid file.FChk
gives file.g09
Integration over basins
dgrid input_file
Sample input file:
:: Title
:-------------------------------------------------------------
wfn_1=C2H2.g09
compute
:-----------------------------------------
using wfn_1
rho
mesh=0.1 rho=0.0009 parallel
save field_1
:-----------------------------------------
compute_end
compute
:-----------------------------------------
using wfn_1
:format=cube
ELI-D alpha-alpha
:rho
:rho Laplacian
mesh=0.1 rho=0.0009 parallel
:change mesh and rho_cutoff
save field_2
:-----------------------------------------
compute_end
basin
:---------------------
using field_2
save basin_2
crop using field_1 0.001
:---------------------
basin_end
integrate
using field_1
over basin_2
integrate_end
If you would like to look at some other non-covalent interactions, many geometries (in xyz format)
can be found here:
http://www.begdb.com/index.php?action=oneDataset&id=4&state=show&
order=ASC&by=name_m&method=
You can repeat the same steps as you did for NCI and IGM with
these. Or you calculate a wavefunction yourself and do a QTAIM and ELI analysis.