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ABSTRACT: We have performed a large-scale test of
alchemical perturbation calculations with the Bennett accept-
ance-ratio (BAR) approach to estimate relative affinities for the
binding of 107 ligands to 10 different proteins. Employing 20-
Å truncated spherical systems and only one intermediate state
in the perturbations, we obtain an error of less than 4 kJ/mol
for 54% of the studied relative affinities and a precision of 0.5
kJ/mol on average. However, only four of the proteins gave
acceptable errors, correlations, and rankings. The results could
be improved by using nine intermediate states in the
simulations or including the entire protein in the simulations
using periodic boundary conditions. However, 27 of the
calculated affinities still gave errors of more than 4 kJ/mol, and for three of the proteins the results were not satisfactory. This
shows that the performance of BAR calculations depends on the target protein and that several transformations gave poor results
owing to limitations in the molecular-mechanics force field or the restricted sampling possible within a reasonable simulation
time. Still, the BAR results are better than docking calculations for most of the proteins.

■ INTRODUCTION

One of the prime goals of computational chemistry is to
develop accurate methods to estimate the affinity of a small
molecule (L) binding to a biomacromolecule (R), i.e. the free
energy of the reaction

+ →L R LR (1)

Such a method would find great use in medicinal chemistry if
the binding constant of a drug candidate could be accurately
predicted without synthesizing it. It would typically then be
enough to estimate relative affinities, i.e. to predict a correct
ranking of a series of homologous ligands. On the other hand,
the requirements on the accuracy is highthe method should
be able to discriminate between drugs that have an affinity
difference of about 4 kJ/mol, corresponding to a difference of a
factor of 5 in the binding constant.
Alchemical perturbation methods, e.g. free-energy perturba-

tion or thermodynamic integration, are computer protocols that
combine a thermodynamic cycle with free-energy estimates of
transforming one state into another, e.g., one ligand into
another, by employing molecular dynamics or Monte Carlo
simulations.1 Alchemical methods are based on an exact
statistical mechanical formalism and should in principle give a
correct estimate of the binding free energy, provided that the
energy function is correct and the sampling is perfect. However,
extensive sampling is affordable only at the molecular-
mechanics level, and even at that level, perfect sampling is
not practically feasible. Therefore, alchemical methods also

involve approximations and need to be carefully validated
against experimental data sets to identify strengths and
weaknesses of various approaches. Typically, alchemical
methods are considered to be too costly for drug development,
because they require a slow transformation of one state into
another, through a series of unphysical, intermediate states,2

although a few successful applications to drug development
have been presented.1,3 Therefore, cheaper alternatives such as
scoring functions and end-point methods have been much
more used for practical drug development. Although such
approaches sometimes have given useful results, they are
typically less accurate than alchemical methods.4,5

A natural approach to speed up molecular simulations is to
consider only a restricted number of atoms around the site of
interest. Such approaches have been used for a long time.6−8

Recently, we have shown the efficiency and accuracy of such an
approach for relative binding free-energies calculated by
alchemical perturbation methodsall atoms outside a sphere
of 20 Å of the ligand could be ignored without changing the
calculated affinities by more than 1 kJ/mol.9 Moreover, the
efficiency can be further increased by a careful analysis of the
simulation time and the required number of intermediate
states.10 However, the impact of these results is restricted
because the approach was evaluated only on a single test case,
viz., the binding of nine inhibitors to the blood clotting factor
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Xa (fXa). In this study, we therefore present a large-scale test of
the protocol optimized for fXa and investigate whether the
protocol is general. We have selected a diverse set of 107
ligands binding to 10 proteins, viz., cyclin-dependent kinase 2,
cyclooxygenase-2, dihydrofolate reductase, estrogen receptor,
factor Xa, ferritin, glycogen phosphorylase, human immunode-
ficiency virus protease, neuraminidase, and p38α MAP kinase.
Our aim is to investigate whether a simple alchemical
perturbation protocol for relative binding affinities is applicable
to a large and diverse set of protein−ligand complexes, without
any particular effort to address protein-specific issues or any
extensive sampling, thereby aiming at a setting suitable for drug
design. We also compare the results with those obtained by
standard docking methods.

■ METHODS
System Preparation. Ten proteins were considered in this

study: cyclin-dependent kinase 2 (CDK2), cyclooxygenase-2
(COX2), dihydrofolate reductase (DHFR), estrogen receptor
(ER), factor Xa (fXa), ferritin, glycogen phosphorylase (GP),
human immunodeficiency virus protease (HIV-PT), neurami-
nidase (NA), and p38αMAP kinase (p38). In total, 107 ligands
were studied, and template structures of these are shown in
Figure 1. The systems were selected to obtain a wide range of
proteins and ligands for which relative affinities can be
estimated by alchemical perturbation methods.11 In particular,
we considered only charge-preserving transformations, and the
perturbations were rather small, ranging from H → F to H →

CH2CH2CH3 or H → CF3, i.e., introducing at most four non-
hydrogen atoms. All except two involved perturbations at a
single site. The proteins represent many different classes and
display varying binding sites as shown in Figures S1 and S2. All
ligands represent pharmaceutical compounds. Most of the
systems have been studied with computational tools
before,12−18 and all inhibitors bind by noncovalent interactions.
The proteins were prepared in the following way: A

representative crystal structure was selected for each protein
(specified in Table S1), and they were protonated using the
leap module of Amber11,19 assuming a pH of 7 (i.e., Asp and
Glu were negatively charged; Arg, Lys, and possibly His
positively charged; and the other residues neutral). The
protonation of the His residues was determined by investigating
the hydrogen-bond network and solvent accessibility, and the
assigned protonation states are listed in Table S1. No
counterions were used to neutralize the systems. All proteins
were described with the Amber99SB force field,20 except fXa,
which was described with the Amber99 force field,21 following
our earlier studies.9,10 As the two force fields share the same
charges and differ only in the protein backbone parameters, we
expect very little difference between the results of the two force
fields.
Ligands for which no crystal structure was available (see

Table S1) were built by manually adding or removing atoms of
ligands in available crystal structures, assuming a similar binding
mode. The ligands were described with the general Amber
force field,22 and protons were added to the ligands using

Figure 1. Ligand structures considered in this study. The sites considered for transformations are shown in bold face and are denoted R1, R2, etc., or
X if it is a single site. For DHFR and fXa, there are two different scaffolds, denoted by a and b.
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UCSF Chimera.23 Charges were obtained using the restrained
electrostatic potential method:24 The ligands were optimized
with the semiempirical AM1 method,25 followed by a single-
point calculation at the Hartree−Fock/6-31* level to obtain the
electrostatic potentials, sampled with the Merz−Kollman
scheme.26 The potentials were then used by Antechamber19

to calculate the charges.
Two setups of the proteins were employed. In the first,9 the

protein−ligand complexes or the free ligand were solvated in a
sphere of TIP3P water molecules27 with a radius of 20 Å,
centered on the coordinate center of the ligand. Protein
residues outside the sphere were kept in the simulations but
were restrained to the starting coordinates with a force constant
of 837 kJ/mol/Å2, and they were excluded from the
calculations of the nonbonded interactions.9 This setup will
be called spherical, and it was employed for all proteins.
In the second setup,10 we employed instead periodic

boundary conditions (therefore, this setup will be called
periodical in the following), and the entire protein was
included in the calculations. The protein−ligand complex or
the free ligand was put into a truncated octahedral periodic box
of TIP3P water molecules extending at least 10 Å from the
solute.
Free-Energy Calculations. The relative binding free

energy between two ligands, L1 and L2, ΔΔG = ΔGbind(L2)
− ΔGbind(L1), was calculated for 91 pairs of ligands (see Table
S2). The studied transformations were selected based on the
availability of experimental data and computational conven-
ience and thus do not involve all possible combinations of the
selected 107 ligands. We employed a thermodynamic cycle that
relates ΔΔG to the free energy of alchemically transforming L1
into L2 when they are either bound to the protein, ΔGbound, or
free in solution, ΔGfree,

28

ΔΔ = Δ − Δ = Δ − ΔG G G G G(L2) (L1)bind bind bound free
(2)

ΔGbound and ΔGfree were estimated by the Bennett acceptance-
ratio method29 (BAR) by dividing the transformation into a
discrete number of states, described by a coupling parameter λ.
Energies were also calculated by thermodynamic integration
(TI) and exponential averaging (results described in the
Supporting Information).
For the spherical setup, we followed our recent suggestion9,10

to simulate only the end states (λ = 0 or 1) and a single
intermediate state at λ = 0.5. The electrostatic and van der
Waals interactions were transformed simultaneously in the
simulation by using soft-core potentials for disappearing
atoms,30,31 as recently implemented in the Q programs.9,32

The perturbations used a single-topology approach, trans-
forming disappearing atoms into dummy atoms. An automatic
script to set up the free-energy calculations can be found in
http://www.teokem.lu.se/∼ulf/Methods/fepq.html.
The periodic simulations employed the Amber11 software19

and 13 intermediate states (λ = 0.00, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.95, and 1.00). The electrostatic and van der
Waals interactions were transformed simultaneously in the
simulation by using soft-core potentials for disappearing atoms
and a dual-topology approach.33 An automatic script to also set
up these calculations can be found in http://www.teokem.lu.
se/∼ulf/Methods/rel_free.html.
Simulations with Spherical Systems. The minimizations

were performed with the sander module of Amber11,19 and the
MD simulations were carried out using Qdyn5 in the Q

software suite.32 The temperature was kept constant at 300 K
using a weak-coupling thermostat.34 In the minimization, a 20
Å cutoff was used for the nonbonded interactions, whereas in
the MD simulations a 10 Å cutoff was used, except for
interactions with the ligand, for which no cutoff was applied. In
the MD simulations, long-range electrostatics were treated with
the local reaction-field approach,35 and water molecules were
subjected to polarization and radial restraints as implemented in
the Q software.32 When simulating the protein−ligand
complexes, solute atoms outside the simulation sphere were
kept fixed at their initial positions using a strong harmonic
restraint (837 kJ/mol/Å2), and solute atoms in the outermost 2
Å shell were weakly restrained (84 kJ/mol/Å2). When
simulating the free ligand, the center of mass of the ligand
was weakly restrained (22 kJ/mol/Å2) to the center of the
simulated sphere. The nonbonded pair list was updated every
25 steps. SHAKE36 was applied to all bonds involving hydrogen
atoms, and a time step of 2 fs was used.
The free-energy simulations were performed as follows: The

system at λ = 1 was minimized using 100 steps of steepest
descent and then equilibrated, first using a 20 ps simulation in
which all hydrogen atoms and water molecules were allowed to
move, and the rest of the atoms were restrained toward their
starting positions with a harmonic restraint of 105 kJ/mol/Å2,
and a 30 ps unrestrained simulation. Thereafter, the free-energy
simulations were started at different λ values. They consisted of
20 ps restrained equilibration, 500 ps (200 ps in case of fXa)
unrestrained equilibration, and 1 ns production. Energy
differences for BAR were sampled every 10 ps, because this is
close to the estimated correlation time of these energies.

Simulations with Periodic Systems. The minimizations
and MD simulations were performed with the sander module of
Amber11,19 except the calculations for the λ = 0.00 and 1.00
states, which were performed with the pmemd module of a
prerelease of Amber14.37 The temperature was kept constant at
300 K using a Langevin thermostat38 with a collision frequency
of 2.0 ps−1, and the pressure was kept constant at 1 atm using a
weak-coupling isotropic algorithm34 with a relaxation time of 1
ps. Particle-mesh Ewald summation39 with a fourth-order B
spline interpolation and a tolerance of 10−5 was used to handle
long-range electrostatics. The cutoff for nonbonded interactions
was set to 8 Å, and the nonbonded pair list was updated every
50 fs. The SHAKE algorithm36 was used to constrain bonds
involving hydrogen atoms so that a 2 fs time step could be used.
The alchemical perturbation simulations were performed in

the following way: The system at each λ value was minimized
for 100 cycles of steepest descent, with all atoms except water
molecules and hydrogen atoms restrained to their start position
with a force constant of 418 kJ/mol/Å2. This was followed by a
50 ps NPT simulation, and a 500 ps NPT equilibration without
any restraints. Finally, a 1 ns production simulation was run.
Energy differences for BAR were sampled every 10 ps. In a few
cases, sporadic SHAKE problems were encountered (related to
the compiler40), which were solved by not constraining any
bond lengths for the ligand and reducing the time step to 1 fs.

Docking Calculations. For the same systems, docking
calculations were performed with two different software. First,
we used GOLD version 5.141 and the ChemScore scoring
function.42,43 The binding site was defined as all residues within
10 Å of the ligand. The starting structures were the same as for
MD, but all water molecules were stripped off. Ten repeats of
10 genetic algorithm runs were performed. The details of each
run (population size, number of operations, etc.) were selected
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automatically by GOLD. The highest score among the 10
repeats was used as the final prediction. If the root-mean-
squared deviation (RMSD) with respect to the pose in the
starting structure was higher than 2 Å, we also took the score of
the pose that had the lowest RMSD among the top solutions of
the 10 repeats. If the RMSD still was higher than 2 Å, we
instead took the highest score of all solutions (not only the top
one) that had an RMSD lower than 2 Å (or the lowest RMSD if
no such solution was found).
The second set of docking calculations was performed with

the DOCK 6.5 software.44 The starting structures were the
same as for the GOLD calculations. The binding site was
defined to be within 10 Å of the ligand (except for HIV-PT, for
which it was 13 Å, owing to the size of ligands). The ligand
charges were calculated with antechamber using the AM1-BCC
approach. Default Dock6 parameters were used throughout.
The grid calculations used the bump filter with an overlap of
0.75. Reported scores were obtained by Grid score, which is a
discretization of the Amber nonbonded interaction energies.44

Uncertainties and Quality Metrics. The uncertainties of
the free-energy estimates were obtained by nonparametric
bootstrap sampling (using 100 samples) of the work values in
the BAR calculations.
The quality of the binding-affinity estimates compared to

experimental data were quantified using the average unsigned
error (AUE), median unsigned error (MUE), the correlation
coefficient (r2; a negative sign indicates that r is negative), and
Kendall’s rank correlation coefficient (τ) calculated only for the
transformations explicitly simulated (i.e., not for all pairs of
ligands that can be constructed from these values). The latter
coefficient was also calculated after removing predicted and
experimental relative affinities that were not significantly
different from zero at the 90% level (τ90).

45 For COX2, ER,
fXa, NA, and p38, no experimental uncertainties were reported,
and we then assumed an experimental uncertainty of 1.7 kJ/
mol.46 The uncertainties of the quality metrics were obtained
by a parametric bootstrap (500 samples) using the estimates
and their uncertainties.

■ RESULTS AND DISCUSSION
Results with the Spherical Setup. We have estimated the

relative free energies between 91 pairs of ligands from 10
different proteins employing alchemical free-energy perturba-
tions and the standard thermodynamic cycle with the two
ligands either bound to the protein or free in solution.28 Free-
energy differences were calculated with the Bennett acceptance-

ratio (BAR) method. The studied transformations range from
small transformations, such as H → F, to relatively large
transformations, like H → propyl, i.e., changes typical at the
level of lead optimization. To start with, we used our recently
suggested approach to minimize the computational effort using
spherical systems and taking into account only protein atoms
within 20 Å of a central atom of the ligand.9,10 Moreover, we
used only the two end points and a single intermediate state at
λ = 0.5, and 1.5 ns simulations of both the protein−ligand and
free-ligand system for each λ value.
Using this approach, we obtained the free-energy estimates

listed in Table S2. A histogram of the deviation from the
experimental affinities is shown in Figure 2. It can be seen that
54% of the estimates have errors of 4 kJ/mol or less compared
to experimental results. The average unsigned error (AUE)
over all proteins is 6.0 kJ/mol, whereas the median unsigned
error (MUE) is 3.7 kJ/mol. The maximum error is 21 kJ/mol.
There is no correlation between the error and how many heavy
atoms or how many polar atoms are involved in the
transformation. Instead, the performance seems to be more
related to what protein is studied. The AUE, MUE, r2, and
Kendall’s τ and τ90 are listed in Table 1 for each of the proteins
individually.
For CDK2, the AUE is 6 kJ/mol, indicating considerable

deviation from the experimental affinities (nine of the 17
transformation had an absolute error larger than 4 kJ/mol), and
r2 (0.05) indicates that the predictions are almost random,
which is also confirmed by Kendall’s τ (0.2).
The COX2 estimates have an AUE of 10 kJ/mol. The reason

for this is that all calculated relative affinities have a smaller
magnitude than the experimental ones, except for the two
perturbations for which the experimental estimate is less than 1
kJ/mol: The experimental values are −23 to 23 kJ/mol,
whereas the calculated ones are −4 to 8 kJ/mol. On the other
hand, there is a clear correlation between the calculated and
experimental estimates (r2 = 0.4) and eight of the 11 estimates
have the correct sign (τ = 0.5; nine out of 11 of the signs are
statistically significant, i.e. τ90 = 0.8). The studied perturbations
form two closed cycles, 1→ 2→ 4→ 5→ 7→ 1 and 7→ 8→
9 → 10 → 7, for which the calculated affinities should vanish
exactly, providing a test of the internal consistency of the
results. For the first cycle, we obtained a proper result, −1 ± 1
kJ/mol. However, for the second cycle, the results are worse,
−3.5 ± 0.3 kJ/mol, indicating that some of the perturbations
are not fully converged.

Figure 2. Histogram over the errors in the 91 relative binding free energies compared to experiments for the spherical setup using three λ values.
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The DHFR results are considerably better than for CDK2
and COX2, with an AUE of 2 kJ/mol, a maximum error of 4
kJ/mol, a r2 of 0.8, and a τ90 of 0.6. For this test case, our
alchemical perturbation method works well, even if 70% of the
calculated estimates are still smaller in magnitude than the
experimental ones.
For ER, the results are poor with an AUE of 6 kJ/mol, no

correlation, and a negative τ = −0.3 (τ90 = 0, reflecting that two
of the statistically significant results are correct and two are
wrong). Four of the six transformations give absolute errors
larger than 4 kJ/mol.
The fXa estimates have an AUE of 5 kJ/mol, but this rather

high value comes almost entirely from the 39 → 63
perturbation with an error of 20 kJ/mol; the other seven
perturbations give an AUE of only 2 kJ/mol. However, these
seven perturbations have quite small experimental binding-
affinity differences (less than 5 kJ/mol and only two of them
are significantly different from zero at the 90% level), so the
correlation is still low (r2 = 0.1).
The ferritin estimates have an AUE of only 2 kJ/mol and an

excellent correlation of r2 = 0.9. The maximum error is 3 kJ/
mol. Moreover, τ = 0.7 reflects that all except one of the
estimates have the correct sign.
The estimates for GP have an AUE of 6 kJ/mol. Again, this is

caused by one perturbation, 4 → 1, which gives an error 13 kJ/
mol. The other four estimates give an AUE of 4 kJ/mol and a
correlation of r2 = 0.8. Only one of the five estimates has an
incorrect sign. Also for this target, there is a closed cycle, 1 → 3
→ 4 → 1, for which we obtain poor results 6 ± 1 kJ/mol,
indicating problems with the convergence (e.g., too few λ
values).
For HIV-PT, we obtain very poor results: The AUE is 11 kJ/

mol, and all perturbations give large errors, 4−21 kJ/mol, even
if four of them are simple H → CH3 perturbations. In fact, all
calculated estimates are too negative.
The results for NA are similar. All perturbations give a large

error of 10−17 kJ/mol, yielding an AUE of 13 kJ/mol, and all
the calculated results are too negative. However, since the error
is rather systematic, the correlation between the experimental
and calculated results is still good, r2 = 0.8.
Finally, p38 gives an AUE of only 2 kJ/mol and a maximum

error of 5 kJ/mol. However, most of the experimental
differences are small, up to 6 kJ/mol, and only five of them

are significantly different from zero at the 90% level. The
calculated estimates reproduce the sign of four of these
(although only three of the estimates are statistically
significant). The correlation is also rather weak, r2 = 0.4.
To summarize, three of the proteins (DHFR, ferritin, and

p38) give an AUE better than 4 kJ/mol. Two additional
proteins (fXa and GP) give MUE ≤ 4 kJ/mol, indicating that
the higher AUE is caused by a single bad result. The other five
proteins give quite poor results with AUEs and MUEs of 6−14
kJ/mol. Moreover, only three proteins give correlations above
0.8 (DHFR, ferritin, and NA), because of problems with
outliers or that the experiment affinity differences are small. On
the other hand, only one protein gives a negative τ90 and all
except three give a τ90 that is significantly better than random
(which would give τ90 = 0). Finally, we note that for 75% of the
perturbations, the calculated free-energy difference is smaller
than the experimental one.
The statistical uncertainty is also important to consider, and

the standard error of all estimates is shown in Table S2. It
ranges from 0.05 to 6 kJ/mol with an average of 0.5 kJ/mol,
showing that the precision in general is excellent. Only nine of
the estimates have a standard error larger than 0.7 kJ/mol, and
most of those cases also have a large error in the calculated
relative affinities. Clearly, a large standard error indicates
incomplete sampling.

Improving Poor Estimates. We have seen that the
calculated affinities are unsatisfactory for several of the studied
proteins. A possible explanation of these poor results is the
approximations employed in our alchemical perturbation
approach, in particular the use of only three λ values and the
truncation of the proteins. In a first attempt to improve the
results, we tested to insert eight additional λ values at 0.1, 0.2,
0.3, 0.4, 0.6, 0.7, 0.8, and 0.9 for CDK2, COX2, ER, GP, HIV-
PT, and NA, still using the spherical setup. The individual
results are collected in Table S3 and the performance for each
protein target is presented in Table 2.
For CDK2, five of the 17 transformations gave a significantly

different result with more intermediate states at the 90% level.
However, this is mainly due to the high precision of the
estimates, and only two transformations gave a difference larger
than 2 kJ/mol. For the 30 → 32 transformation, the estimate
became 2 kJ/mol more positive, thereby increasing the error
compared to experiments to 3 kJ/mol. For the 33 → 21

Table 1. Quality Metrics for the Calculated Affinities for Each of the 10 Studied Proteins Using the Spherical Setup and Three λ
Valuesa

AUE MUE r2 τ τ90 nt90 nt90(exp) nttot

CDK2 6.5 ± 0.4 5.6 ± 0.8 −0.05 ± 0.03 0.18 ± 0.15 0.43 ± 0.06 7 10 17
COX2 10.5 ± 0.5 10.7 ± 1.2 0.40 ± 0.05 0.46 ± 0.13 0.78 ± 0.04 9 9 11
DHFR 2.1 ± 0.4 1.7 ± 0.3 0.81 ± 0.22 0.40 ± 0.17 0.60 ± 0.08 5 6 10
ER 6.4 ± 0.7 5.7 ± 1.2 0.05 ± 0.06 −0.33 ± 0.20 0.00 ± 0.06 4 5 6
fXa 4.5 ± 0.5 1.5 ± 0.8 −0.56 ± 0.13 0.25 ± 0.22 0.00 ± 0.15 2 3 8
Ferritin 1.6 ± 0.2 1.6 ± 0.4 0.86 ± 0.05 0.71 ± 0.15 0.60 ± 0.07 5 7 7
GP 5.6 ± 0.6 4.1 ± 0.9 0.09 ± 0.07 0.60 ± 0.05 0.60 ± 0.05 5 5 5
HIV-PT 11.0 ± 0.2 10.0 ± 0.5 0.06 ± 0.03 −0.25 ± 0.04 −0.71 ± 0.05 7 8 8
NA 13.3 ± 1.0 13.8 ± 1.4 0.81 ± 0.15 0.20 ± 0.22 0.50 ± 0.03 4 5 5
p38 2.1 ± 0.4 2.0 ± 0.6 0.37 ± 0.13 0.14 ± 0.19 0.50 ± 0.10 4 5 14

aThe quality metrics are average unsigned error (AUE), the median unsigned error (MUE), the correlation coefficient (r2; a negative sign indicates
that r is negative), Kendall’s rank correlation coefficient (τ), and τ calculated only for the transformations for which both the predicted and
experimental differences are statistical significantly different from zero at the 90% level. The number of such transformations is indicated by nt90,
whereas nt90(exp) indicates the number of transformations that have an experimental difference that is statistical significant, and nttot is the total
number of transformations.
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transformation, the estimate changed by 17 kJ/mol, strongly
improving the estimate, although it is still 5 kJ/mol from the
experimental result. However, besides τ90 (which increases to
0.4), the general performance is not significantly improved.
For COX2, eight of the 11 transformations gave a

significantly different result with more intermediate states.
However, only two transformations gave a change larger than 2
kJ/mol. These transformations are 1 → 7 and 2 → 3, and one
of them was improved and the other became worse, but both
still had errors of more than 10 kJ/mol. Yet, r2, τ, and τ90 are all
significantly improved (to 0.7, 0.6, and 0.8). The free energies
of the two cycles are now both small, −1 kJ/mol.
For ER, all but two of the transformations resulted in

significantly different estimates with more intermediate states.
Although the differences were larger than 2 kJ/mol for three of
these transformations, none of them came closer to experi-
ments. Therefore, only τ90 was significantly improved (to 0.6).
For HIV-PT, seven of the nine transformations resulted in

statistically significant differences. Four of them were larger
than 2 kJ/mol, but only one of them improved the results
compared to experiments. As a consequence, all quality metrics
except r2 became worse.
For NA, two of the transformations resulted in significantly

different estimates with more intermediate states. The results
for transformations 12 → 11 and 17 → 16 became 4 and 5 kJ/
mol more positive, i.e. closer to experiment. Therefore, all
quality metrics except r2 improved, but the errors were still
substantial (6−10 kJ/mol).
For GP, all but one of the transformations resulted in a

significant different estimate. For three of these trans-
formations, 3 → 1, 4 → 1, and 4 → 3, the differences were
larger than 2 kJ/mol and closer to the experimental value.
Hence, the correlation coefficient increased to 0.15, whereas
both AUE and MUE decreased to 4 kJ/mol. Thus, GP was the
only protein for which the results improved to a satisfactory
level with 11 λ values. However, one of the perturbations (4 →
1) still gave a large error (10 kJ/mol), and the free energy of
the closed cycle (9 ± 1 kJ/mol) indicates that the perturbations
are still not converged. A plot of the derivative of the potential
energy with respect to λ is shown for a typical GP perturbation
in Figure S3. It can be seen that there is a very large change
between λ = 0.0 and 0.1, clearly showing that this system

requires more intermediate states at low λ values. The situation
is remarkably different from the other systems, illustrated by
HIV-PT that is plotted in the same figure.
We also tried to run twice as long simulations for COX2 and

ER, but the results did not improve. For COX2, only two
transformations resulted in a difference larger than 2 kJ/mol,
but both transformations still had errors larger than 10 kJ/mol
compared to experiments. For ER, none of the transformations
gave a statistically significant difference when the simulations
were prolonged.

Results with the Periodic Setup. It is also possible that
the truncation of the protein may deteriorate the calculated
affinities. Therefore, we tested a second setup for the five
proteins with poor results (CDK2, COX2, ER, HIV-PT, and
NA) with simulations of the full protein in a periodic octahedral
box, treating long-range electrostatics with Ewald summation
using the Amber software and employing 13 λ values (the
periodic setup).
The results of these calculations are listed in Table S3, and

they are summarized in Table 3. It can be seen that the results
are in general improved: For the 47 new perturbations, the
AUE is reduced from 9 to 7 kJ/mol, the correlation (r2) is
improved from 0.03 to 0.29, τ is improved from 0.11 to 0.28,
and τ90 is improved from 0.32 to 0.53. However, the absolute
errors decreased for only 62% of the individual perturbations
and the maximum error actually increased to 23 kJ/mol.
For ER, the results are now fairly good, with a MUE of 4 kJ/

mol, a correlation of 0.8, and a correct sign for the five
perturbations that give a significant difference. However, one of
the perturbations (4 → 6; involving a OH → H perturbation)
still gives a large error (12 kJ/mol).
For NA, the results of all five perturbations are strongly

improved, so that AUE decreases from 13 to 5 kJ/mol and τ90 is
perfect. However, three of the perturbations still give errors of 7
kJ/mol. The change is essentially a translation of the data, so r2

remains at 0.8.
For COX2, the results for nine of the perturbations are

improved and all quality measures become better (r2 to 0.6 and
τ90 to 0.8), but six of the transformations still give large errors
(5−23 kJ/mol), so the AUE is 8 kJ/mol. The two closed cycles
still give free energies of ±1 kJ/mol.

Table 2. Quality Metrics for the Calculated Affinities for Six Proteins Using the Spherical Setup and 11 λ Values (Quality
Measures Are the Same As in Table 1)

AUE MUE r2 τ τ90 nt90

CDK2 6.5 ± 0.3 5.7 ± 0.6 0.00 ± 0.01 −0.18 ± 0.15 0.43 ± 0.06 7
COX2 10.4 ± 0.5 10.0 ± 1.3 0.66 ± 0.06 0.64 ± 0.13 0.78 ± 0.04 9
ER 7.9 ± 0.7 7.6 ± 1.1 0.01 ± 0.03 0.00 ± 0.14 0.60 ± 0.08 5
GP 3.9 ± 0.5 3.8 ± 0.8 0.15 ± 0.10 0.60 ± 0.05 0.60 ± 0.05 4
HIV-PT 11.4 ± 0.2 11.3 ± 0.6 0.27 ± 0.05 −0.50 ± 0.13 −0.71 ± 0.05 7
NA 11.3 ± 0.8 9.9 ± 1.3 0.64 ± 0.14 0.60 ± 0.20 0.50 ± 0.03 4

Table 3. Quality Metrics for the Calculated Affinities for Five Proteins Using the Periodic Setup and 13 λ Values (Quality
Measures Are the Same as in Table 1)

AUE MUE r2 τ τ90 nt90

CDK2 6.6 ± 0.4 5.2 ± 0.7 0.27 ± 0.07 0.18 ± 0.13 0.56 ± 0.05 9
COX2 7.7 ± 0.5 4.6 ± 1.4 0.58 ± 0.04 0.64 ± 0.13 0.78 ± 0.03 9
ER 5.5 ± 0.7 3.7 ± 1.0 0.78 ± 0.08 0.67 ± 0.16 1.00 ± 0.09 4
HIV-PT 10.5 ± 0.6 10.1 ± 1.4 0.00 ± 0.01 −0.50 ± 0.18 −0.33 ± 0.05 6
NA 4.7 ± 0.7 6.9 ± 1.3 0.77 ± 0.12 0.60 ± 0.26 1.00 ± 0.00 3
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For CDK2, the results of half of the transformations are
improved, giving r2 = 0.3 and τ90 = 0.6, but AUE remains at 7
kJ/mol. Finally, HIV-PT still gives poor results with little
improvement in any quality metrics (e.g., AUE = 11 kJ/mol and
r2 = 0.0).
Interestingly, most perturbations show large differences

compared to the previous calculations with an AUD of 7 kJ/
mol. A total of 87% of the differences were statistically
significant at the 95% level. This is unexpected because
previous comparisons between the two approaches for fXa
indicated that the two protocols give the same results within 1
kJ/mol. The periodic calculations gave a slightly worse but less
varying precision, 0.2−0.9 kJ/mol with an average of 0.6 kJ/
mol, except for three HIV-PT transformations (2−3 kJ/mol).
We can directly estimate the effect of the reduced number of

λ values by calculating the relative binding affinities from the
new calculations based on only three λ values (0.0, 0.5, and
1.0). As can be seen in Tables S3 and S4, the results
deteriorate: For example, AUE increases to 7−23 kJ/mol for
the five proteins (11 kJ/mol for all). The individual estimates
change by up to 51 kJ/mol with an AUD of 7 kJ/mol. For 51%
of the estimates, the change is statistically significant at the 95%
level (i.e., typically 3 kJ/mol) and for 83% of the estimates, the
results deteriorate. The two closed cycles for COX2 give very
poor results (6 and 36 kJ/mol), showing severe problems with
the convergence, much worse than for the spherical setup.
Clearly, using only three λ values is a poor approximation,
especially for the periodic simulations, and cannot be
recommended. Finally, it should be admitted that it is
somewhat risky to rerun only proteins that gave poor results
with improved methodsit is possible that the other systems
gave good results only by chance, although previous
calculations with fXa have shown good results both with
accurate and more approximate approaches.9,10

What Performance Can Be Expected? When discussing
the accuracy of estimated binding affinities, it is important to
remember that both the experimental and calculated affinities
have a limited precision. Therefore, even if the calculations gave
the correct results (within this precision), r2 and τ will not be
1.0.46,47 This can be illustrated by a statistical simulation in
which we assume that the predicted affinities give the same
results as the experimental affinities, but both are affected by a
normal-distributed statistical uncertainty. The experimental
uncertainties were 0.1−2.2 kJ/mol, but they were not reported
for five of the proteins. Therefore, we assume an experimental
uncertainty of 1.5 kJ/mol for all data.46 For the calculated
affinities, we assume a standard deviation of 0.5 kJ/mol, which
is roughly the average uncertainty of the BAR predictions in
this study.
With these uncertainties, we sampled 10 000 series of

experimental and such exact “estimated” affinities and
calculated the r2 and τ between the two sets. The averages of
these 10 000 series are presented in Table 4 and represent the
best possible results given the uncertainties in the experiments
and predictions. Comparing these results with the BAR results
in Tables 1−3, it can be seen that the BAR results for ferritin
are actually better than what can be expected. This is partly
because the experimental uncertainty for ferritin is only 0.18
kJ/mol. Using this uncertainty in the estimation of the
optimum performance, the observed r2 is more realistic,
although the observed τ is still larger than the calculated
optimum (which of course is possible, because the BAR result
is only one possible outcome of a random sampling, giving rise

to the average results in Table 4). It can also be seen that r2 for
the BAR results of DHFR and τ for ER approach the optimum
values, showing that those predictions are close to ideal,
although the quality metrics themselves are not perfect. The r2

for ER and NA, as well as τ for GP and NA, are also within 0.14
of the ideal values, whereas for the other systems, the results are
clearly far from ideal.
Some of the proteins in this study have been used previously

in theoretical studies. CDK2, COX2, and NA were studied by
Essex and co-workers to test if implicit-solvation simulations
could be used as a tool in lead optimization.11 For CDK2, they
obtained poor predictions with r2 = 0.09−0.16 and AUE = 13−
19 kJ/mol. For COX2, they got decent correlations with r2 =
0.70−0.85 and AUE = 3−5 kJ/mol. Finally, for NA, they
obtained r2 = 0.8 and MUE = 5−14 kJ/mol. However, it should
be noted that they used a larger set of transformations than in
this study, so the results are not directly comparable. The p38
system has been used in several studies.12,13 Pearlman and
Charifson reported a predictive index of 0.8 using TI, but only
if the protein was restrained to the crystal structure, indicating
poor sampling.12 Jorgensen and co-workers reported a
predictive index of 0.4 and AUE of 7 kJ/mol. However, they
were able to improve this by including explicit water molecules
in their binding site.13 DHFR was used in a study with the
MM/PB(GB)SA approach (molecular mechanics with Pois-
son−Boltzmann or generalized Born and surface-area solva-
tion), and they obtained excellent correlation with experimental
data with r2 > 0.8 for most of their tested protocols.14 The HIV-
PT system has been used in some studies with heavily fitted
linear interaction energy models.15,16 Ferritin and fXa have
been used in several studies by us, especially when testing the
MM/GBSA approach.9,10,17 For CDK2 and fXa, relative
binding affinities have been calculated by TI and BAR for
other large sets of ligand.48 For fXa, a decent r2 = 0.58 but a
rather high root-mean-squared error (RMSE) of 9 kJ/mol were
obtained. For CDK2, they obtained a similar RMSE, but the r2

was only 0.12. This could be improved to 0.36 if eight
transformations with large changes in the protein structure
were omitted. They also obtained results with similar or better
quality with the MM/PBSA approach (but not with the linear
interaction energy approach), but only for selected subsets of
ligands or variations in the method (structures from MD or

Table 4. Estimated Optimum r2 and τa

optimum BAR

r2 τ r2 τ

CDK2 0.90 0.78 0.27 0.18
COX2 0.99 0.88 0.58 0.64
DHFR 0.86 0.70 0.81 0.40
ER 0.91 0.66 0.78 0.67
fXa 0.86 0.71 −0.56 0.25
Ferritin 0.74 0.51 0.86 0.71
GP 0.84 0.71 0.15 0.60
HIV-PT 0.86 0.69 0.00 −0.50
NA 0.91 0.73 0.77 0.60
p38 0.76 0.66 0.37 0.14

aThe average metric was estimated from 10 000 resamples of the
experimental free energies, assuming a normal distribution with
uncertainties of 0.5 and 1.5 kJ/mol for the predicted and experimental
free energies, respectively. Our best estimated BAR results are also
included (CDK2, COX2, ER, HIV-PT, and NA from Table 3, for GP
from Table 2, and for the other systems from Table 1).
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minimization; variations in the dielectric constant). A recent
large-scale test of alchemical perturbation methods on five
other proteins gave similar results, with RMSE = 1−9 kJ/mol
and r2 = 0.25−0.96, depending on the protein target.40

Analysis of the Performance. In this section, we try to
explain why the alchemical perturbations were successful on
some systems but failed on others. One possibility is that this is
connected to the performance of the alchemical perturbations.
We tested several diagnostic tools suggested in the literature,
measuring the overlap of the distributions or the convergence
of the perturbations, viz., the Bhattacharyya coefficient for the
energy distribution overlap (Ω),49 the Wu and Kofke overlap
measures of the energy probability distributions (KA) and their
bias metrics (Π),50,51 the weight of the maximum term in the
exponential average (wmax), the difference of the forward and
backward exponential average estimate (ΔΔGEA), and the
difference between the BAR and TI estimates (ΔΔGTI,
although this difference may also reflect the integration error
in TI52). The maximum (wmax, ΔΔGEA, ΔΔGTI) or minimum
(Ω, KAB, Π) values of these estimates over the 12 + 12
individual perturbations for the complex and free-ligand

transformations are listed in Table 5 for the periodic
simulations with 13 λ values.
After some testing, we decided to use the following criteria

for problematic perturbations: Ω < 0.7, KAB < 0.7, Π < 0.5,50

wmax > 0.2, ΔΔGEA > 4 kJ/mol, or ΔΔGTI > 4 kJ/mol. It can be
seen that there is some consistency between the various
measures, pointing out the same transformations as problem-
atic. However, wmax and especially ΔΔGEA often point out too
many transformations (the exponential averaging is often
problematic in the direction from the smaller to the larger
ligand, but not in the opposite direction, something BAR
should be able to cure), whereas Ω, KAB, and ΔΔGTI point out
too few. In total, 10 transformations were pointed out by at
least two diagnostics to be problematic, mainly for HIV-PT,
indicating that more λ values or longer simulations are needed.
Unfortunately, there is very little correlation between the

diagnostics and the error of the BAR results compared to
experimental data (r < 0.2), and none of the criteria could
correctly predict whether the transformation is successful (error
<4 kJ/mol) in more than half of the transformations (19−24
correct predictions, out of 47, i.e. similar to a random guess).
However, when applied to the calculations with three λ values,

Table 5. Diagnostic Measures of the Performance of the Various Transformations: The Bhattacharyya Coefficient for the
Energy Distribution Overlap (Ω),49 the Wu and Kofke Overlap Measures of the Energy Probability Distributions (KAB) and
Their Bias Metrics (Π),50,51 the Weight of the Maximum Term in the Exponential Average (wmax), the Difference of the
Forward and Backward Exponential Average Estimate (ΔΔGEA), and the Difference between the BAR and TI Estimates
(ΔΔGTI)

a

Ω KAB Π wmax ΔΔGEA ΔΔGTI ΔΔGexp

CDK2
22→21 0.73 0.82 0.80 0.10 4.3 0.4 2.7
23→21 0.78 0.86 1.10 0.06 1.8 0.1 5.7
24→21 0.76 0.89 1.00 0.06 0.7 0.0 16.7
25→21 0.78 0.86 1.10 0.08 0.8 0.2 0.5
26→21 0.76 0.89 1.20 0.04 0.6 0.1 1.1
27→21 0.75 0.92 0.80 0.10 0.8 0.0 2.3
28→21 0.77 0.83 0.90 0.09 0.6 0.1 13.6
29→21 0.76 0.89 1.10 0.09 1.6 0.8 4.7
30→21 0.72 0.85 1.00 0.07 2.5 0.1 10.8
30→32 0.74 0.85 0.70 0.22 1.4 0.2 1.0
31→32 0.74 0.87 0.90 0.08 1.7 0.1 5.1
33→21 0.80 0.88 0.80 0.13 1.3 0.3 9.7
33→35 0.76 0.87 0.40 0.44 4.2 0.8 7.6
34→35 0.74 0.83 0.90 0.10 3.3 0.0 3.5
36→21 0.78 0.88 1.00 0.10 1.3 0.0 20.1
37→21 0.79 0.87 1.10 0.06 1.0 0.0 0.3
38→32 0.57 0.23 0.50 0.15 9.3 1.3 6.2

COX2
1→7 0.77 0.87 0.50 0.07 2.6 5.1 10.3
2→1 0.37 0.11 1.00 0.04 6.7 0.4 4.6
2→3 0.43 0.15 0.00 0.10 3.4 7.8 1.4
2→4 0.90 0.89 1.10 0.04 0.9 0.1 8.6
5→4 0.79 0.84 1.30 0.04 0.5 0.2 0.4
5→7 0.77 0.90 0.80 0.18 1.2 0.7 13.2
6→1 0.79 0.82 1.20 0.05 1.8 0.5 2.1
7→8 0.77 0.89 1.10 0.05 1.3 0.6 19.0
7→10 0.75 0.85 1.10 0.03 0.9 0.7 22.9
9→8 0.74 0.76 1.10 0.07 0.7 0.1 0.9
10→9 0.76 0.83 1.00 0.05 1.1 0.2 1.5

ER
1→3 0.57 0.32 0.10 0.38 5.5 0.5 3.2
2→1 0.76 0.87 1.00 0.08 1.4 0.8 3.6

Ω KAB Π wmax ΔΔGEA ΔΔGTI ΔΔGexp

ER
3→6 0.74 0.87 0.80 0.09 2.3 0.4 7.2
4→5 0.74 0.86 1.10 0.06 1.1 0.5 3.8
4→6 0.75 0.77 1.00 0.07 1.8 0.4 11.7
8→4 0.76 0.90 0.60 0.28 2.8 1.6 3.7

HIV-PT
2→1 0.72 0.87 0.70 0.08 3.0 0.1 13.2
3→1 0.74 0.83 0.60 0.31 4.1 0.4 16.9
7→6 0.78 0.84 -0.10 0.38 103.9 1.2 10.1
8→6 0.73 0.86 -0.10 0.29 104.0 0.4 13.3
12→11 0.76 0.88 -0.10 0.22 116.9 5.1 1.6
13→11 0.73 0.94 0.60 0.29 5.6 0.3 16.4
22→21 0.78 0.90 1.10 0.09 0.8 0.0 3.3
23→21 0.79 0.94 0.60 0.18 5.5 0.0 9.4

NA
12→11 0.78 0.84 0.90 0.11 1.9 0.0 7.2
13→11 0.76 0.87 0.80 0.08 4.8 0.4 1.8
14→12 0.81 0.86 0.80 0.13 1.5 0.0 7.0
16→15 0.79 0.89 0.60 0.09 2.5 0.2 0.8
17→16 0.77 0.83 0.70 0.20 2.2 0.1 6.9
r 0.13 0.19 −0.03 0.12 0.04 −0.12
aThe table shows the maximum (wmax, ΔΔGEA, ΔΔGTI) or minimum
(Ω, KAB, Π) values of these estimates over the 12 + 12 individual
perturbations and possibly for both forward and backward
perturbations (Ω, KAB, Π, wmax), for the complex and free-ligand
transformations for the periodic simulations with 13 λ values.
Problematic perturbations are marked in bold face, i.e. those with Ω
< 0.7, KAB < 0.7, Π < 0.5,50 wmax > 0.2, ΔΔGEA > 4 kJ/mol, or ΔΔGTI
> 4 kJ/mol. In addition, the absolute difference between the BAR and
experimental estimate of the binding affinity (ΔΔGexp in kJ/mol) is
included, as well as the correlation between the various measures and
ΔΔGexp (r; on the last line).
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significantly more transformations are predicted to be problem-
atic, showing that these criteria can be used to decide if too few
λ values are used.
Next, we have analyzed the structural and chemical features

of the proteins and ligands. Such an analysis has previously
been performed in the context of virtual screening.53 For the
ligands, we calculated the number of hydrogen-bond donors
and acceptors, molecular weight, and number of rotatable
bonds (see Table 6). We then computed correlation between
the average properties for each protein and the BAR
performance (MUE and τ90). The number of hydrogen-bond
donors and acceptors as well as the molecular weight showed a
rather weak correlation to the BAR performance (0.37−0.48),
except the number of hydrogen-bond acceptors, which showed
a somewhat stronger correlation to MUE (0.67). The number
of rotatable bonds showed an even stronger correlation to both
MUE and τ90 (0.76 and −0.68). However, all these correlations
come mainly from HIV-PT, which showed the worst
performance and also the largest ligands with by far the largest
number of rotable bonds, but also many hydrogen-bond donors
and acceptors. If HIV-PT is omitted, all correlations drop to
0.27 or less, except for the number of hydrogen-bond acceptors
vs MUE (0.51). This shows that the poor results for HIV-PT
can at least partly be explained by its very large and flexible
ligands, making sampling problematic (although for relative
affinities we would expect a fair degree of cancellation of this
effect, unless the ligands have different binding modes).
However, for the other targets, we see no consistent correlation
to the properties of the ligands.
Next, we studied the protein−ligand complexes. We first

computed how buried the ligands are in the binding pocket by
taking the difference of the solvent-accessible surface of the
ligand when free in solution and bound to the receptor
(ΔSASA in Table S5). ΔSASA showed some anticorrelation to
the MUE (−0.61) but no correlation to the ranking. This
reflects that the proteins with the most buried ligands (DHFR
and fXa) gave good MUEs, whereas HIV-PT with the least
buried ligands gave the worst results. This probably reflects that
buried ligands show smaller dynamics than exposed ones,
reducing the need of conformational sampling. However, the

correlation is far from perfectp38 has almost as exposed
ligands as HIV-PT, but gave a low MUE, whereas COX2 with
the third highest ΔSASA gave poor results.
It is reasonable to expect that the quality of the crystal

structure may affect the alchemical perturbation results. In this
study, we have employed structures with resolutions of 1.9−3.0
Å (Table 6). However, there was no correlation between the
resolution of the crystal structure and the accuracy of the BAR
results (r < 0.3). Likewise, we have computed the root-mean-
squared fluctuation (RMSF) for the protein backbone in the
MD simulations (see Table 6). However, the 10 proteins gave
quite similar results (0.23−0.35 Å), and there was no consistent
correlation to the BAR results (r = −0.01 and −0.43).
Finally, we note that the experimental affinities for ferritin

were determined by isothermal calorimetry,54 whereas they
were obtained from various biochemical assays for the other
proteins.12,55−63 For COX2, ER, NA, and p38, only IC50

estimates were reported, whereas for the other proteins, Ki

values were measured. It is notable that three of the former
proteins gave poor BAR results, indicating that the accuracy of
experimental data might affect the results.

Docking Calculations. To put the alchemical perturbation
results in a proper perspective, we also tested to study the same
91 transformations with docking calculations. We tested two
different widely used docking software, GOLD 5.141 with the
ChemScore42,43 scoring function and Dock 6.544 with grid
scoring. The results of these calculations are collected in Table
S5 and summarized in Table 7. Since the docking calculations
do not give energies or any uncertainties of the estimated
scores, we can only compare r2 and τ. From Table 7, it can be
seen that GOLD gave significantly (by at least 0.1) better r2

than BAR for COX2 (0.6; r2 for fXa is also better, but r2 = 0.1
indicates essentially no correlation). On the other hand, it gave
worse results for four proteins, CDK2, DHFR, ferritin, and p38
(as before, we use results for CDK2, COX2, ER, HIV-PT, and
NA from Table 3, for GP from Table 2, and for the others from
Table 1). Likewise, GOLD gave a better τ for one target, HIV-
PT (0.75), but worse results for six proteins (CDK2, COX2,
DHFR, ER, GP, and p38).

Table 6. Average Properties of the Ligands and the Protein−ligand Complexes As Well As Their Correlation to the Average
Performance of the BAR Calculations (MUE and τ90; for CDK2, COX2, ER, HIV-PT, and NA, Metrics Taken from Table 3, for
GP from Table 2, and for the Other Systems from Table 1; Values in Brackets Show the Correlations Omitting HIV-PT)

#H-bond donors #H-bond acceptors molecular weight #rotatable bonds ΔSASAa resolution RMSFb

CDK2 1.6 5.3 313.5 3.4 64.5 2.3 0.28
COX2 1.2 5.3 395.8 4.5 74.3 3.0 0.27
DHFR 2.9 4.6 237.6 1.6 96.4 2.3 0.32
ER 2.7 5.1 461.4 6.0 63.1 1.9 0.35
fXa 5.1 7.5 446.6 8.1 97.2 2.0 0.33
Ferritin 1.0 1.0 154.9 1.8 68.8 1.9 0.29
GP 5.8 9.8 268.6 1.4 67.7 2.4 0.23
HIV-PT 5.5 10.5 551.6 19.4 50.0 2.5 0.34
NA 4.3 8.9 296.3 6.6 60.0 2.0 0.26
p38 0.1 4.1 432.9 3.0 53.4 2.5 0.30
r(MUE) 0.42 0.67 0.45 0.76 −0.61 0.26 −0.01

(0.16) (0.51) (0.03) (0.27) (−0.49) (0.14) (−0.43)
r(τ90) −0.41 −0.37 −0.48 −0.68 −0.04 −0.15 −0.55

(−0.16) (0.01) (−0.12) (−0.07) (−0.57) (0.02) (−0.21)
aΔSASA = (SASA(bound) − SASA(free))/SASA(free) in percentage, where SASA is the solvent-accessible surface area of the ligand when it is free
in solution or when it is bound to the receptor. It was estimated from the starting structure of the simulations. bThe average root-mean-square
fluctuation (RMSF) of the backbone CA atoms (in Å), estimated from the simulations at λ = 0.0.
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Dock gave somewhat worse results: It gave an improved τ for
DHFR and HIV-PT (0.6 and 0.5, respectively) but worse
results for all the other targets except NA. The correlation
coefficient was worse for all targets except HIV-PT and fXa
(and for the latter two targets, Dock gave no correlation, r2 =
0.0).
We also calculated the root-mean-squared deviation

(RMSD) of the docked poses from the starting structure
(crystal or modeled structure). For many proteins, this
deviation is small, meaning that the docked pose is close to
the expected binding position. However, for some proteins,
large deviations were observed for all (ferritin and HIV-PT) or
most (p38) of the poses. We then tried to instead use poses
with an RMSD below 2 Å or the pose with the lowest RMSD, if
no poses with a RMSD < 2 Å was found. However, this did not
change the results significantly.
Therefore, we can conclude that for the tested trans-

formations, the alchemical perturbations clearly give better
results than docking with these two software. Of course, this
comes with a much higher computational effort for the BAR
calculations and the fact that we only estimate relative affinities
with BAR, whereas the docking gives absolute affinities also.

■ CONCLUSIONS

In this paper, we have studied the performance of alchemical
perturbation simulations, using the BAR approach, to estimate
relative binding affinities for a large and diverse test set
involving 107 ligands binding to 10 different proteins (91
relative affinities in total). In particular, we wanted to test our
recently suggested approach to speed up the calculations by
using only a single intermediate state and spherical systems
where the protein outside 20 Å from a central atom of the
ligand is ignored.9,10

In general, the results are rather good: 54% of the calculated
affinity differences agree with experimental data to within 4 kJ/
mol, which is a reasonable target accuracy (the reported
standard error of the experimental affinities is 0.1−2.2 kJ/mol).
The precision is also excellent, with a median value for the
standard error of only 0.3 kJ/molonly seven of the calculated
affinities have a standard error above 1 kJ/mol. Moreover, the
ranking of the ligands is better than random for seven of the
proteins. However, for 46% of the affinities, the results are less
satisfactory. Therefore, we tried to use more intermediate states
or include the entire protein in the calculations using periodic

boundaries. This resulted in improved results, although, for
CDK2, COX2, and HIV-PT, the results are still poor.
The present calculations are fairly fast and automatic. For

example, the spherical calculations for fXa with 3 or 11 λ values
took 36 CPU h on six or 22 processors in total for one
transformation.9 The corresponding periodic simulations took
56 h on six or 26 processors with 3 or 13 λ values.10 Given
ligand−protein input structures, the setup and run of the
simulations are essentially automatic, using the scripts described
in the Methods section.
From this study, we can conclude that alchemical

perturbations with BAR is a promising approach for the
calculation of relative binding affinities in a lead-optimization
setting, giving better results than docking calculations with
GOLD and DOCK. However, it performs poorly for some
targets, probably owing to conformational changes during the
binding or problems with the molecular-mechanics force field
for some types of ligands or interactions. In particular, it seems
to have a problem with large and flexible ligands and solvent-
exposed binding sites, e.g., for HIV-PT. Moreover, even for
well-behaving proteins, a few transformations gave large errors,
probably indicating a change in the binding mode or the
involvement of slowly equilibrating water molecules in the
binding. It is a future challenge to solve these problems to make
this approach more robust. Problems with conformational
changes could in principle be solved by longer simulations64−66

or by accelerated-sampling methods,67−74 but this would
typically be too expensive in this large-scale test and in a
drug-design workflow. Our results clearly show that employing
only a single intermediate state in the perturbations to speed up
the calculations works only for a few proteins and is not a
general approach. Likewise, it seems to be advisable to include
the full protein in the simulations.

■ ASSOCIATED CONTENT

*S Supporting Information
Binding free energies estimated by thermodynamic integration
and exponential averaging, details of the setup of the proteins,
the studied transformations and the raw binding free energies
obtained for each setup, quality metrics for the calculated
affinities for the periodic setup and 3 λ values, raw results for all
the docking calculations, ligand-interaction diagrams and active-
site sketches for each protein, as well as the derivative of the
potential energy with respect to λ for a typical perturbation for

Table 7. Quality Measures for Affinities Obtained by Docking for Each of the 10 Studied Proteinsa

GOLD, best GOLD, alt. Dock, best Dock, alt.

r2 τ r2 τ r2 τ r2 τ

CDK2 −0.04 −0.06 0.00 0.06 0.00 −0.18 0.00 −0.18
COX2 0.63 0.45 0.63 0.45 −0.11 0.27 −0.05 0.09
DHFR 0.69 0.20 0.69 0.20 0.55 0.60 0.04 −0.20
ER 0.89 1.00 0.84 1.00 0.02 0.00 0.09 0.00
fXa 0.11 0.00 0.00 0.00 0.00 −0.50 0.01 −0.50
Ferritin 0.57 0.71 0.45 0.71 0.00 0.14 −0.13 0.14
GP 0.07 −0.60 0.07 −0.60 −0.15 −0.20 −0.12 0.20
HIV-PT 0.06 0.75 0.00 0.25 0.00 0.50 0.00 0.25
NA 0.88 0.60 0.88 0.60 −0.57 0.60 −0.55 0.20
p38 −0.03 −0.21 −0.11 −0.07 0.00 −0.29 0.10 −0.21

aTwo docking methods were used (GOLD and Dock), and for each, two results are given. The first (best) is the best score among all obtained
structures. In the second (alt.), the best score is reported that has an RMSD below 2 Å or the score of the pose with the lowest RMSD, if no poses
with RMSD < 2 Å were found. The raw data are collected in Table S5.
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the GP and HIV-PT systems. This material is available free of
charge via the Internet at http://pubs.acs.org.
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