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Comparison of MM/GBSA calculations based on
explicit and implicit solvent simulations

Frithjof Godschalk, Samuel Genheden, Pär Söderhjelm and Ulf Ryde*

Molecular mechanics with generalised Born and surface area solvation (MM/GBSA) is a popular method

to calculate the free energy of the binding of ligands to proteins. It involves molecular dynamics (MD)

simulations with an explicit solvent of the protein–ligand complex to give a set of snapshots for which

energies are calculated with an implicit solvent. This change in the solvation method (explicit - implicit)

would strictly require that the energies are reweighted with the implicit-solvent energies, which is

normally not done. In this paper we calculate MM/GBSA energies with two generalised Born models for

snapshots generated by the same methods or by explicit-solvent simulations for five synthetic

N-acetyllactosamine derivatives binding to galectin-3. We show that the resulting energies are very

different both in absolute and relative terms, showing that the change in the solvent model is far from

innocent and that standard MM/GBSA is not a consistent method. The ensembles generated with the

various solvent models are quite different with root-mean-square deviations of 1.2–1.4 Å. The ensembles

can be converted to each other by performing short MD simulations with the new method, but the

convergence is slow, showing mean absolute differences in the calculated energies of 6–7 kJ mol�1 after

2 ps simulations. Minimisations show even slower convergence and there are strong indications that the

energies obtained from minimised structures are different from those obtained by MD.

Introduction

Molecular mechanics with generalised Born and surface-area
solvation (MM/GBSA)1,2 is among the most popular methods to
estimate protein–ligand binding affinities,3,4 to find important
residues for protein–protein interactions,5,6 and to study
macromolecular stability.1,7 When computing the MM/GBSA
free energy, the system of interest is first simulated using either
molecular dynamics (MD) or Metropolis Monte Carlo and
snapshots are sampled at regular intervals. Second, for each
snapshot, the following free energy is calculated in a post-
processing step

G = Eint + Eele + Evdw + Gpol + Gnp � TS (1)

where the first three terms on the right-hand side are the
molecular-mechanics internal, electrostatic, and van der Waals
energies, respectively. Gpol and Gnp are the polar and non-polar
solvation free energies, and T and S are the absolute temperature
and an entropy estimate, respectively. Usually, the system is
solvated in a box of explicit water molecules during the simulation.

These solvent molecules are removed before the post-processing
and replaced with an implicit representation, using either the
generalised Born (GB) or Poisson–Boltzmann methods together
with a surface-area term (the Gpol and Gnp terms in eqn (1)).4,8

Thus, the solvent model and therefore the Hamiltonian are
different in the simulation and in the post-processing, an
inconsistency that has hardly been discussed.

Strictly, such a shift in the Hamiltonian requires that the
snapshots should be reweighted with the new (implicit-solvent)
energy function. When computing the average MM/GBSA
energy over all snapshots, each snapshot should be assigned
a weight that is the Boltzmann factor of the difference between
the energies with the simulation Hamiltonian (explicit solvent)
and the post-processing Hamiltonian (implicit solvent). How-
ever, this is normally ignored and a plain average is computed,
i.e., all snapshots are weighted equally.

An alternative is to perform also the simulation in implicit
solvent, thereby circumventing the reweighting and giving
a solvent-consistent MM/GBSA method. However, an implicit
solvent is a theoretically less rigorous approach than explicit
solvent, and it is not certain that the two sampling approaches
will give equivalent ensembles.9 In addition, implicit-solvent
simulations sometimes give poor results, e.g. dissociation of
ligands or protein subunits.10
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In this paper, we make a thorough comparison of MM/GBSA
energies calculated from simulations with either implicit or
explicit simulations. Furthermore, we quantify the similarity of
the obtained snapshots by converting the explicit solvent-
simulated snapshots to implicit simulated-snapshots using
short MD simulations or minimisations. As a test case, we use
the binding of five inhibitors to the carbohydrate-recognition
domain of the protein galectin-3 (gal3). These systems have been
used previously in MM/GBSA calculations11 and they have also
been studied experimentally.12

Methods
System preparation

The five ligands illustrated in Fig. 1 were studied when bound
to gal3. The five ligands are synthetic N-acetyllactosamine
derivatives and will be denoted as in the original publication,12

viz., 2 through 6. The crystal structures of the complexes of gal3
with ligands 2 and 3 (PDB codes: 2XG313 and 1KJR12) were used
as starting structures for the simulation of these ligands. For
ligands 4, 5, and 6, we used the crystal structure of gal3–3 after
removing the methoxy group of 3 and replacing fluorine with
hydrogen atoms. This structure was used because ligands 4, 5,
and 6 are all fluorinated and therefore expected to have a
binding mode similar to that of 3, whereas 2 is not fluorinated
and displays a different binding mode regarding the conforma-
tion of Arg-144, as can be seen in Fig. 2. The preparation of the
protein has been described in detail previously.11 All residues
were assigned their normal protonation states at pH 7, i.e. all
Asp and Glu residues were negatively charged and all Lys and
Arg residues were positively charged. The His residue at the
binding site (His-158) was protonated on the ND1 atom,
whereas the other three His residues were protonated on the
NE2 atom. The protein was described with the Amber99SB force
field14 and the ligands were described with the general Amber
force field.15 Charges for the ligands were obtained by
restrained electrostatic potential (RESP) calculations16 on ESPs
calculated at the Hartree–Fock/6-31G* level and sampled with
the Merz–Kollman scheme.17

Implicit simulations

All MD simulations were run by the sander module of Amber11.
Two implicit solvation models were tested, viz. the generalised
Born models by Mongan et al. (GBn)18 and by Onufriev,
Bashford, and Case (GBOBCI; the first model, i.e. with the three
parameters set to 0.8, 0.0, and 2.9).19 For GBn, Bondi radii20

were used, whereas the second set of modified Bondi radii
(mbondi2)19 was used with GBOBCI. The non-polar solvation was
calculated by multiplying the solvent-accessible surface-area (SA)
with a surface-tension parameter, i.e., gSA.21 SA was estimated by
the LCPO method22 (linear combinations of pairwise overlaps)
and g was set to 0.021 kJ mol�1 Å�2. The non-bonded cutoff, as
well as the cutoff for the calculation of the effective Born radius,
were set to 15 Å. The temperature was kept at 300 K using
Langevin dynamics23 with a collision frequency of 2 ps�1. All
bonds to hydrogen atoms were constrained using SHAKE24 and a
2 fs time step was used for the integration of motion. The forces of
slowly-varying motions (the derivatives with respect to effective
Born radii and pair interactions whose distances are greater than
8 Å) were evaluated every second step, and the non-bonded pair
list was updated every 25 steps.

The protein–ligand complexes were first minimised by
500 steps of steepest descent, using a harmonic restraint towards
the crystal structure with a force constant of 418.4 kJ mol�1 Å�2 on
non-hydrogen atoms, followed by a 20 ps MD simulation with the
same restraints but with the force constant halved, and a 1000 ps
MD simulation without any restraints. The final structure of this
simulation was used to start 40 independent simulations by
assigning different initial velocities. Each independent simulation
was further simulated for 300 ps, and snapshots were extracted
every 5 ps during the last 200 ps. This has shown to be a proper
simulation protocol for gal3.11

Fig. 1 The five ligands investigated in this study. The numbering of the ligands follows the original study.12

Fig. 2 Overlay of the crystal structures of gal3 in complex with 2 (PDB id
2XG313) in red and in complex with 3 (PDB id 1KJR12) in blue. The closest
residues are shown in light red and light blue, respectively, with the only
significant deviation seen for Arg-144, which forms a stacking interaction on
opposite faces of the aromatic ring of the ligand.
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Explicit simulations

The systems were solvated in a pre-equilibrated truncated
octahedral box of TIP4PEw water molecules.25 The temperature
was kept at 300 K using Langevin dynamics23 as for the implicit
simulations, and the pressure was kept at 1 atm using an
isotropic weak-coupling algorithm26 with a relaxation time of
1 ps. SHAKE24 was used to constrain bonds to hydrogen atoms
and the time step was 2 fs. The cut-off for the van der Waals
interactions was 8 Å and the long-range correction was estimated
using a continuum approach.27 Electrostatic interactions were
computed using particle-mesh Ewald summation28 with a
fourth-order B-spline interpolation, a tolerance of 10�5 and a
real-space cut-off equal to 8 Å. The non-bonded pair list
was updated every 25 step. The simulation protocol, i.e., the
minimisation, equilibration, and production MD simulations,
was identical to that used for the implicit simulations.

MM/GBSA calculations

The binding free energy between the protein and a ligand was
estimated by

DG = hG(PL) � G(P) � G(L)iPL (2)

where PL, P, and L are the protein–ligand complex, the protein,
and the ligand, respectively, and the free energy of each of these
species was calculated using eqn (1).1 The brackets indicate an
average over snapshots from the MD simulations of the
complex. To compute the energies for the protein and the
ligand, the coordinates of the other moiety were removed. This
is the standard approach of MM/GBSA, giving precise energies
in an efficient manner.29 Moreover, the Eint term in eqn (1)
cancels out.

The Eint, Eele, and Evdw terms in eqn (1) were evaluated using
the same force field as in the simulation, but without any
cutoff. The Gpol and Gnp terms were estimated using the same
methods used in the implicit simulation, i.e. with GBn or
GBOBCI and gSA. The entropy was calculated as a combination
of the rotational and translational entropy from standard
formulas for gas-phase molecules and the vibrational entropy,
calculated from frequencies obtained by a normal-mode analysis.
The normal-mode analysis was computed on truncated systems as

described previously30 yielding an improved precision and
efficiency.31 For each protein–ligand complex and solvation
model, we calculated the MM/GBSA energy on 40 snapshots from
40 independent simulations, i.e., 1600 snapshots in total.

Statistical analysis

Each reported uncertainty of MM/GBSA estimates is the
standard deviation of the mean over the 40 independent
simulations, i.e., the standard deviation over the average MM/
GBSA result from the 40 independent simulations divided by
ffiffiffiffiffi

40
p

. The MM/GBSA estimates were compared to experimental
free energies using the mean unsigned error after removal of
the systematic error (i.e. the mean signed deviation from the
experimental results; MUEtr), the correlation coefficient (r2),
and Kendall’s rank correlation coefficient (t). The uncertainties
of these quantities were obtained by a bootstrapping procedure
outlined previously.11

Results and discussion

We have estimated binding affinities of five ligands to gal3
using MM/GBSA. The MM/GBSA calculations were based on
snapshots generated using MD simulation with either explicit
TIP4PEw water molecules or two implicit GB methods. In what
follows, we will discuss the binding affinities obtained and the
differences between the snapshots generated with the different
solvent models.

Binding affinities

The computed binding affinities are shown in Table 1 for the
various combinations of solvent models used in the MD
simulations and energy post-processing. In the conventional
MM/GBSA approach, the protein–ligand complex is simulated
with an explicit solvent representation.4 Using such an
approach and post-processing the snapshots with the GBn
model gives binding affinities that are anti-correlated with
the experimental binding affinities. The correlation coefficient
(r2) is 0.78 � 0.06, but Kendall’s t of �0.78 � 0.04 shows that a
majority of the affinities are incorrectly ranked. The mean
unsigned error after removal of the systematic error (MUEtr)

Table 1 MM/GBSA estimates of the binding free energy (kJ mol�1), using different combinations of solvent models in the MD simulations and the energy evaluations

Energya GBn GBOBCI

ExpMDb GBn GBOBCI TIP4PEw GBn GBOBCI TIP4PEw

2 �169.2 � 2.4 �6.5 � 2.8 �76.1 � 3.8 �93.6 � 0.5 �87.2 � 0.7 �75.8 � 1.1 �29.7
3 �182.3 � 1.9 �39.7 � 3.9 �66.6 � 3.0 �95.5 � 0.6 �87.1 � 0.7 �89.6 � 0.8 �34.8
4 �156.1 � 2.2 �52.7 � 1.8 �107.1 � 2.4 �89.9 � 0.4 �75.1 � 0.5 �91.2 � 0.6 �24.5
5 �131.4 � 3.4 �35.3 � 2.2 �86.8 � 4.6 �89.4 � 0.6 �86.5 � 0.7 �98.7 � 1.4 �29.7
6 �178.0 � 2.2 �68.6 � 2.5 �120.2 � 3.9 �83.0 � 0.6 �81.3 � 0.7 �101.0 � 0.8 �26.3

MUEtr 14.2 � 1.2 19.0 � 1.1 20.7 � 1.5 2.7 � 0.2 2.4 � 0.3 9.4 � 0.4
r2 c 0.07 � 0.03 �0.20 � 0.06 �0.78 � 0.06 0.50 � 0.05 0.70 � 0.06 �0.07 � 0.02
t 0.33 � 0.06 �0.33 � 0.08 �0.78 � 0.04 0.56 � 0.10 0.78 � 0.17 �0.33 � 0.08
Range 50.9 62.0 53.6 12.5 12.2 25.3 10.3

a The solvent model used in the MM/GBSA energy post-processing. b The solvent model used in the MD simulations to generate the snapshots.
c A negative sign or r2 indicates that r is negative.
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is 21 � 2 kJ mol�1, which is much larger than for the null
hypothesis that all ligands have the same affinity (MUEtr =
2.9 kJ mol�1). This is mostly caused by the exaggerated range of
the MM/GBSA estimates, 54 kJ mol�1 compared to 10 kJ mol�1

for the experimental affinities, which leads to a slope that is
much larger than 1.

If we instead use the GBOBCI method for the Gpol term on the
same snapshots, the results are not improved. The correlation
coefficient is basically zero, t shows that most of the affinities
are incorrectly ranked, and the MUEtr of 9.4 � 0.4 kJ mol�1 is
larger than for the null hypothesis. However, the difference in
uncertainty of the two approaches is interesting. GBn gives
consistently a worse precision than GBOBCI, 3.5 kJ mol�1

compared to 0.9 kJ mol�1 on average. From Table 2, it can be
seen that this comes entirely from the Gpol term, which has an
average precision of 3.3 kJ mol�1 when evaluated with the GBn
model but 1.1 kJ mol�1 when evaluated with the GBOBCI model.
The second largest uncertainty is for the electrostatic term,
1.5 kJ mol�1 on average for both models. The other terms have
uncertainties that are smaller than 1 kJ mol�1. Hence, the
uncertainty of the GBn estimates is dominated by the uncertainty
in the Gpol term, whereas the uncertainty of the GBOBCI estimates is
dominated by the Eele term.

An alternative to simulate with explicit water is to simulate
with the same GBSA model used in the energy post-processing,
an approach we will call solvent-consistent MM/GBSA (sc-MM/
GBSA) in the following. Such binding affinities have been
estimated as well, and using GBn both in the simulations and
the energy calculations improves the affinities compared to the
explicit-solvent simulation. However, the results are still quite
poor, with basically no correlation and a MUEtr (14� 1 kJ mol�1)
that is much larger than for the null hypothesis.

However, if we instead use the GBOBCI model both in the MD
simulations and the energy calculations, we obtain good
affinities. The correlation coefficient is decent (r2 = 0.70 �
0.06) and the t of 0.8 � 0.2 shows that most of the affinities are
correctly ranked. Moreover, MUEtr (2.4 � 0.3 kJ mol�1) is lower
than for the null hypothesis, showing that the affinities are
good on a relative scale, although the estimation is much more
negative than the experimental affinities (by 61 kJ mol�1 on
average). A similar remarkable difference in MM/GBSA binding
affinities obtained with the two GB models has previously been
observed for the avidin protein.9 Again, there is also a large
difference in the precision of the binding affinities obtained

with the two approaches. The average precision when using the
GBn model is 2.4 kJ mol�1, whereas the corresponding value for
the GBOBCI model is only 0.7 kJ mol�1 (see Table 2). It is
noteworthy that these uncertainties are smaller than when
the simulation was performed with explicit solvent, indicating
that there is some mismatch between the ensembles generated
with explicit and implicit solvent.

It is also interesting to estimate affinities from energies
calculated by one GB model and based on simulation with
the other GB model. These estimates are shown in Table 1 as
well. Using the GBn model to post-process snapshots generated
with the GBOBCI model gives poor results: there is a negative
correlation and most of the affinities are incorrectly ranked, as
is indicated by t = �0.3 � 0.1. The range of the estimates is
about six times as large as the range of the experimental
affinities, leading to a MUEtr that is much worse than the
MUEtr of the null hypothesis (19 � 1 kJ mol�1). However, if we
instead use the GBOBCI model to post-process snapshots
generated with the GBn model, we obtain quite good results:
r2 = 0.50 � 0.05 and t = 0.6 � 0.1, whereas MUEtr = 2.7 �
0.2 kJ mol�1 is on par with the null hypothesis. These results
indicate that the GBn method gives reasonable structures but
unstable energies, which is also corroborated by the larger
uncertainties of the GBn energies in Tables 1 and 2.

In Table 3, we list the term-wise difference between sc-MM/
GBSA estimates obtained with the GBn and GBOBCI models. It is
clear that the largest difference comes from the Gpol term,
between �39 and �101 kJ mol�1, and �74 kJ mol�1 on average.
There are smaller differences also for the other terms and the
differences are for most of the ligands statistically significant.
Besides Gpol, the Eele term shows the largest variation among
the ligands, with differences between �30 and 2 kJ mol�1. Of
course, this difference is caused by differences in the structures
generated by the two methods (for the same snapshot, the two
methods differ only in the Gpol term). The Gnp term shows the
smallest variation among ligands and also the smallest difference
between the two sc-MM/GBSA approaches. It is also the term that
makes the smallest contribution to the free energy.

Moreover, we have compared the MM/GBSA terms obtained
with the GBOBCI model for snapshots generated either with
GBOBCI or TIP4PEw solvation. From Table 3B, it can be seen that
the difference in the Gpol term is smaller (because the energies
are calculated with the same GBOBCI model) and that the
differences in the Eele and Gpol terms to a large degree cancel
out, so that it is actually the Evdw term that dominates for all
ligands except 2.

RMSD analysis

It is of interest to quantify also the geometric differences
between the three generated ensembles. We started by computing
the root mean square deviation (RMSD) between the various
snapshots and the crystal structure for the heavy atoms of the
protein backbone. The results are shown in Table 4. It is clear that
the explicit-solvent model gives snapshots that are closest to
the crystal structure. The RMSD is B0.7 Å for all ligands.
With the GBn model, we obtain slightly larger RMSDs, between

Table 2 Average uncertainty over the five ligands (kJ mol�1) for the various
terms of different combinations of solvent models in the MD simulation and the
energy evaluation

Energy model GBn GBOBCI

MD model GBn GBOBCI TIP4PEw GBn GBOBCI TIP4PEw

Eele 0.8 1.5 1.5 0.8 1.5 1.5
Evdw 0.5 0.4 0.7 0.5 0.4 0.7
Gpol 2.5 2.7 3.3 0.7 1.1 1.1
Gnp 0.0 0.0 0.1 0.0 0.0 0.1
�TS 0.4 0.6 0.7 0.4 0.6 0.7
DG 2.4 2.6 3.5 0.6 0.7 0.9
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1.0 and 1.2 Å (1.1 Å on average), and with the GBOBCI model, we
obtain even larger RMSDs of 1.1–1.5 Å (1.3 Å on average). These
results follow the expectations, because the explicit TIP4PEw
model, which is expected to give the most accurate results,
gives trajectories closest to the crystal structure and the more
modern GB model (GBn) gives trajectories closer to the crystal
structure than the older GBOBCI model. However, it does not
explain why the GBOBCI model gave better affinities than the
GBn model.

Next, we computed the RMSD between the snapshots in
the same ensemble, i.e. between snapshots generated with the
same solvent model. These measurements are listed in the
upper part of Table 5. For the TIP4PEw ensemble, we obtain
RMSDs between 0.6 and 0.7 Å for the protein backbone and

1.2–1.3 Å for the ligand. For the GBn ensemble, the variation is
slightly larger with an average backbone RMSD of 0.9 Å and an
average ligand RMSD of 1.3 Å. The GBOBCI ensemble gives even
larger RMSD, 1.0 Å for the backbone and 1.4 Å for the ligand
on average. The latter finding is consistent with the larger
uncertainties for the GBOBCI snapshots in all MM/GBSA terms
except Evdw, as shown in Table 2.

We also computed the RMSD between snapshots from
different ensembles, i.e. between snapshots generated with
different solvent models. These measurements are shown in
the lower part of Table 5. Comparing the GBn and TIP4PEw
ensembles, we obtain an average RMSD of 1.2 and 1.7 Å for the
protein backbone and the ligand, respectively. This is higher
than the average RMSDs for the individual GBn and TIP4PEw
ensembles, indicating the two ensembles are more different
than the snapshots within the ensembles. However, the
difference observed for the ligand RMSD is not statistically
significant for all ligands. The same observation holds true
when comparing the GBOBCI and TIP4PEw ensembles, and
when comparing the GBOBCI and the GBn ensembles. However,
the RMSD analysis does not indicate that any ensemble is
more different than the other, because for most ligands, the
differences between the inter-ensemble RSMD measurements
are not statistically significant.

Table 3 Term-wise differences in kJ mol�1 (A) between sc-MM/GBSA estimates using GBn and GBOBCI, and (B) between the MM/GBSA estimates (obtained with
GBOBCI for the energy calculation) using GBOBCI and TIP4PEw trajectories

A B

Ligand Eele Evdw Gpol Gnp �TS Eele Evdw Gpol Gnp �TS

2 2.2 7.6 �87.5 0.3 �4.7 �15.0 �7.4 3.8 �1.1 8.2
3 �18.7 7.5 �87.7 0.4 3.2 18.3 8.4 �17.9 0.5 �6.8
4 �30.0 �0.7 �53.2 �0.7 3.6 38.8 11.7 �31.7 1.0 �3.7
5 �15.6 1.5 �39.1 �0.4 8.6 16.4 20.5 �26.2 1.6 �0.1
6 �7.3 5.8 �100.8 0.2 5.3 13.0 19.8 �18.6 1.9 3.7
Average �13.9 4.3 �73.7 0.0 3.2 14.3 10.6 �18.1 0.8 0.3

A negative difference indicates that the GBn estimate is more negative than the GBOBCI estimate (A) or that the results for the GBOBCI trajectories are
more negative than those for the TIP4PEw trajectories (B).

Table 4 Average RMSD from the crystal structure (Å) for protein backbone
atoms of the snapshots used in the MM/GBSA estimates

Solvent model GBn GBOBCI TIP4PEw

2 1.11 � 0.01 1.10 � 0.01 0.73 � 0.01
3 1.07 � 0.01 1.32 � 0.01 0.79 � 0.01
4 1.00 � 0.00 1.48 � 0.01 0.69 � 0.00
5 1.14 � 0.01 1.48 � 0.01 0.73 � 0.01
6 1.22 � 0.02 1.30 � 0.01 0.72 � 0.01
Average 1.11 1.34 0.73

Table 5 Average RMSD (in Å) between the various snapshots used in the MM/GBSA estimates. The RMSD was calculated for every possible pair of snapshots taken
every 50 ps in the simulations

Solvent model GBn/GBn GBOBCI/GBOBCI TIP4PEw/TIP4PEw

Backbone Ligand Backbone Ligand Backbone Ligand

2 0.96 � 0.02 1.34 � 0.17 1.01 � 0.04 1.38 � 0.17 0.67 � 0.01 1.28 � 0.37
3 0.97 � 0.02 1.41 � 0.23 0.91 � 0.05 1.47 � 0.25 0.66 � 0.01 1.19 � 0.27
4 0.80 � 0.05 1.24 � 0.10 1.18 � 0.07 1.49 � 0.27 0.61 � 0.01 1.19 � 0.28
5 0.94 � 0.03 1.27 � 0.12 1.02 � 0.04 1.33 � 0.14 0.67 � 0.01 1.25 � 0.34
6 1.00 � 0.03 1.32 � 0.15 0.88 � 0.05 1.34 � 0.15 0.71 � 0.01 1.23 � 0.32
Average 0.93 1.32 1.00 1.40 0.66 1.23

Solvent model GBn/TIP4PEw GBOBCI/GBn GBOBCI/TIP4PEw

Backbone Ligand Backbone Ligand Backbone Ligand

2 1.14 � 0.02 1.88 � 0.56 1.15 � 0.03 1.40 � 0.09 1.15 � 0.04 1.89 � 0.59
3 1.17 � 0.04 1.54 � 0.15 1.25 � 0.04 1.53 � 0.17 1.33 � 0.07 1.70 � 0.35
4 1.01 � 0.01 1.50 � 0.15 1.37 � 0.08 1.47 � 0.13 1.59 � 0.23 1.65 � 0.29
5 1.21 � 0.02 1.80 � 0.21 1.29 � 0.05 1.45 � 0.11 1.57 � 0.22 1.95 � 0.68
6 1.23 � 0.02 1.59 � 0.18 1.10 � 0.03 1.36 � 0.07 1.33 � 0.07 1.68 � 0.32
Average 1.15 1.66 1.23 1.44 1.39 1.77
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Converting explicit-solvent generated snapshots to solvent-
consistent snapshots

Owing to the large fluctuations of the total energies, it is not
possible to directly reweight the snapshots from the explicit-
solvent simulations to the implicit-solvent Hamiltonian. As an
alternative, we can attempt to convert the snapshots to the
solvent-consistent ensemble using short MD simulations or
minimisations. In some implementations of a semiempirical
quantum-mechanics variant of MM/GBSA, it is standard to
minimise snapshots with the semiempirical Hamiltonian
before computing eqn (1),32,33 and here we attempt something
similar but with a much purer test case, because we can
perform the MD simulation with the GB Hamiltonian.

Therefore, for each of the snapshots generated with TIP4PEw
water molecules, we performed either short MD simulations or
steepest decent minimisations for 1, 3, 5, 10, 20, 50, 100, 200, or
1000 steps with a GBSA model and then evaluated the free energy
in the normal way. The results are collected in Table 6 and they
are presented as the difference compared to the sc-MM/GBSA
estimates with the same GB model in Table 1.

It can be seen that with short MD simulations, the estimates
converge towards the sc-MM/GBSA results but only slowly. For
GBn there is a mean absolute deviation (MAD) of 43 kJ mol�1

after 10 MD steps, which is reduced to 7 kJ mol�1 after
1000 steps. In the latter case, the difference is not statistically
significant for three of the ligands, but mostly owing to the
poor precision of the GBn estimates. The situation is similar for
GBOBCI, although the differences were smaller from the start.
After 1000 MD steps, the difference is 4 kJ mol�1 and the
difference is not statistically significant for three ligands.

However, for all the other numbers of MD steps, the MAD is
actually larger than for the starting point.

Using minimisation with the GBn model, the differences
compared to sc-MM/GBSA decrease somewhat, but very slowly.
After 1000 steps of minimisation, the MAD is still 54 kJ mol�1.
Likewise, with the GBOBCI model, the deviations have only
decreased by 1 kJ mol�1 after 1000 steps. Hence, it seems very
hard to correct the ensemble using minimisation. The reason
for this is probably that the ensembles obtained by MD
simulations and minimisations are different, which call into
question the re-emerging suggestion to base MM/GBSA and
similar approaches on minimised structures, rather than on
MD snapshots (to save time).34–37

Structural differences in the binding site

A covariance analysis of the snapshots generated by TIP4PEw
and GBOBCI for each ligand shows that the structural differences in
the binding site are similar for the various ligands. In summary, the
binding site is slightly extended in the GB simulations, with the
distance between the Trp-181 and Ser-237 backbones increasing by
B1 Å (Fig. 2 shows residues at the ligand-binding site). The
interactions with the ligand also become slightly weaker, e.g. the
distance from the Trp-181 sidechain is increased by B0.5 Å. This is
also reflected in the calculated binding affinities, which are on
average B8 kJ mol�1 less attractive when the GBOBCI snapshots are
employed (if both sets are evaluated with the same method,
GBOBCI).

The largest differences are seen for the conformation of Arg-144.
In both available crystal structures (for ligands 2 and 3),12,13 the
guanidine group of this residue forms a stacking interaction with

Table 6 Difference between sc-MM/GBSA estimates in Table 1 and MM/GBSA estimates obtained after short MD simulations or minimisations of the snapshots from
the explicit simulation

Solvent GBn GBOBCI

# Steps 2 3 4 5 6 MAD MAX 2 3 4 5 6 MAD MAX

Molecular dynamics
0 �93.0 �115.7 �49.0 �44.6 �57.9 72.0 115.7 �11.4 2.5 16.2 12.2 19.8 12.4 19.8
1 �91.8 �115.5 �49.2 �44.4 �57.4 71.7 115.5 �9.6 3.5 16.4 13.0 20.6 12.6 20.6
3 �83.7 �103.5 �38.4 �32.9 �47.7 61.2 103.5 �5.1 10.0 23.0 19.0 26.5 16.7 26.5
5 �76.4 �94.0 �30.4 �24.8 �39.6 53.0 94.0 �1.6 14.9 27.1 23.1 31.1 19.5 31.1
10 �68.2 �82.2 �21.8 �13.8 �29.9 43.2 82.2 �0.1 15.1 28.3 26.2 32.2 20.4 32.2
20 �49.2 �60.4 �24.0 �12.7 �27.3 34.7 60.4 6.9 19.8 29.3 29.3 35.1 24.1 35.1
50 �27.2 �20.6 19.2 24.6 10.4 20.4 27.2 8.2 20.1 30.6 30.4 36.7 25.2 36.7
100 �43.7 �14.7 60.9 59.0 54.5 46.6 60.9 �1.5 13.5 28.9 33.0 38.2 23.0 38.2
200 �2.2 21.7 20.2 16.0 14.0 14.8 21.7 �1.8 10.6 24.1 18.0 32.8 17.5 32.8
1000 3.0 �16.9 �2.6 �13.5 0.6 7.3 16.9 �6.6 8.5 1.2 1.3 0.5 3.6 8.5

Minimisation
0 �93.0 �115.7 �49.0 51.5 �57.9 73.4 115.7 �11.4 2.5 16.2 12.2 19.8 12.4 19.8
1 �92.2 �115.3 �49.2 �45.2 �58.3 72.0 115.3 �10.8 2.4 16.1 12.0 19.2 12.1 19.2
3 �91.9 �115.3 �48.8 �44.7 �57.9 71.7 115.3 �10.6 2.9 16.5 12.0 19.2 12.2 19.2
5 �91.6 �114.8 �48.2 �44.4 �57.6 71.3 114.8 �10.4 3.4 16.4 12.1 20.3 12.5 20.3
10 �90.6 �113.0 �46.8 �42.3 �56.3 69.8 113.0 �9.6 4.3 17.9 13.9 22.2 13.6 22.2
20 �93.6 �115.4 �47.9 �43.7 �56.7 71.4 115.4 �8.2 5.9 18.9 14.5 21.7 13.9 21.7
50 �90.8 �101.8 �39.0 �33.3 �46.3 62.2 101.8 �10.0 3.9 17.7 16.1 21.7 13.9 21.7
100 �90.6 �100.4 �38.0 �32.6 �45.6 61.4 100.4 �10.4 3.4 17.1 16.0 22.1 13.8 22.1
200 �89.5 �99.3 �36.7 �30.1 �43.0 59.7 99.3 �10.9 3.2 17.1 16.3 22.2 13.9 22.2
1000 �92.1 �90.6 �31.2 �22.9 �35.0 54.3 92.1 �18.5 �2.3 10.1 10.0 17.2 11.6 18.5

MAD and MAX are the mean and maximum absolute differences for the five ligands.

Paper PCCP

D
ow

nl
oa

de
d 

by
 L

un
d 

U
ni

ve
rs

ity
 o

n 
03

/0
5/

20
13

 1
5:

00
:1

4.
 

Pu
bl

is
he

d 
on

 0
3 

A
pr

il 
20

13
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
3C

P0
01

16
D

View Article Online

http://dx.doi.org/10.1039/c3cp00116d


This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys., 2013, 15, 7731--7739 7737

the aromatic ring of the ligand, but with opposite faces of the ring
in the two structures (the ring is also tilted by B90 degrees;
cf. Fig. 2). For ligands 2, 5, and 6, the starting conformation
(i.e. the crystal structure for 2, 3, and 3, respectively) is kept in
the TIP4PEw simulations, suggesting that the stacking interaction
is stable in explicit water. In the GBOBCI simulations, the Arg-144
appears much more flexible and occupies several conformations.
Interestingly, in the GBOBCI simulation of ligand 2, the most
populated conformation is the one corresponding to the crystal
structure of ligand 3. This suggests that the two conformations
have similar stability and that the discrimination between them is
sensitive to the force field, solvent model, and simulation method-
ology. For ligands 5 and 6, the dominant conformation of Arg-144 in
the GBOBCI simulation does not interact with the ligand at all, which
leads to a decrease in van der Waals attraction by B20 kJ mol�1

(see Table 3B). For ligands 3 and 4, the stacking interaction is
lost already in the TIP4PEw simulations in favour of an inter-
action with the side of the ring. Nevertheless, the interaction
becomes even weaker when using the GBOBCI model. These
results are summarized in Fig. 3, which shows the distribution
of the distance between the Arg-144 guanidine group and the
aromatic ring of the ligand for various simulations.

The corresponding results for two time-points from the
short GBOBCI MD simulations are also shown in Fig. 3. It is
evident that after 200 steps, the predominant conformation of
Arg-144 is still the same as in the TIP4PEw simulations. On the
other hand, after 1000 steps, the conformational distribution
has started to shift towards the equilibrated GBOBCI distribu-
tion for three of the ligands (and in the opposite direction for
one ligand). Similar trends are seen for the binding site as a
whole. For the three ‘‘well-behaving’’ ligands, 2, 5, and 6, the
RMSD of the binding site (the ligand and the ten closest residues)
relative to the average GBOBCI structure decreases slightly during
the short GBOBCI simulations; the ensemble initiated with TIP4PEw
snapshots relaxes towards the fully equilibrated GBOBCI ensemble,
as expected, although 1000 steps is too short to see a full

convergence. On the other hand, for ligands 3 and 4, the RMSD
relative to the average GBOBCI structure actually increases
during the short simulations, suggesting the presence of many
accessible conformations. However, the low deviation (only
1.2 kJ mol�1) between the binding affinities calculated using
the 1000-step snapshots and the equilibrated GBOBCI snapshots
for ligand 4 (see Table 6) indicates that once the Arg-144
residue has lost its interaction with the ligand, its exact posi-
tion is not so important energetically.

It is also interesting to note that, for all ligands, a cluster
analysis38 performed on the coordinates of the ligand and the
10 closest residues places all the 1600 TIP4PEw snapshots in
the same cluster, which means that there exists a snapshot
which is within 1 Å RMSD of all the other snapshots. On the
other hand, the same cluster analysis for the GBOBCI snapshots
gives 4–9 clusters (average 6.4) for the various ligands, showing
that much more conformations of the binding site (in particular
Arg-144) are sampled in the GBOBCI simulations.

Conclusions

In this study we have computed MM/GBSA estimates of ligand-
binding affinities using snapshots generated with MD simula-
tions based on one explicit and two implicit-solvent models. We
have compared the estimated affinities, and quantified the
difference between the three snapshot ensembles. The study
has provided several interesting results.

First, it is clear that the choice of solvent model both in the
MD and in the energy calculations strongly affects the accuracy
and precision of the estimates, as shown in Tables 1 and 2. For
this test case, it is best to both run the MD simulations and to
post-process the snapshots using the GBOBCI model, although
MD simulations with GBn followed by energy calculations with
GBOBCI give similar results. However, this is most certainly not a
general conclusion, considering the small test set used and the
fact that the explicit-solvent simulations gave structures closest
to the crystal structure. Similar large differences between
MM/GBSA energies obtained with the GBn and GBOBCI have
also been observed previously for the avidin protein.9 In both
studies, it was clear that GBn exaggerated the range of the
binding affinities, leading to a relatively large MUEtr, although
the ranking of the ligands can be as good or better than those
obtained with GBOBCI. The best approach would be to evaluate
the free energies by free-energy perturbation methods and
explicit water. However, if one chooses to use an implicit model
in the evaluation of free energy, as in the MM/GBSA approach,
it is no longer certain that structures generated with explicit
water molecules will give better results than those generated
with implicit water, even if the former are closer to the crystal
structure. In our case, the results actually become worse, which
may be related to the inconsistency of not reweighting the
snapshots.

Second, it is very hard to distinguish the generated ensembles
by a simple RMSD analysis. It is clear that both GB models show
more variability among the snapshots than TIP4PEw, and that
GBn shows less variation than GBOBCI. Furthermore, we have

Fig. 3 Distribution of the minimum distance between the guanidine group
of Arg-144 and the carbon atoms in the aromatic ring of the ligand over the
1600 snapshots from the TIP4PEw and GBOBCI simulations, as well as from the
short GBOBCI MD simulations (200 or 1000 steps) initiated from the TIP4PEw
snapshots. Results for all five ligands are shown.
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shown that the inter-ensemble variability is larger than the intra-
ensemble variability, i.e., the snapshots from distinct ensembles
are more different than snapshots from the same ensemble.
However, it is not possible to show by the RMSD analysis which
ensemble is most different. In the binding site, the most
prominent differences caused by the solvation model are seen
for Arg-144, which adopts a much greater variety of conformations
in the GB simulations than in the explicit-solvent simulations.

Third, we have attempted to convert the explicit-solvent
snapshots to solvent-consistent snapshots by performing short
MD simulations or minimisations with a GBSA model on the
snapshots before evaluating the MM/GBSA free energy. Using
MD, the results converge slowly towards sc-MM/GBSA estimates,
although more than 1000 steps or 2 ps of simulation seem to be
required before the results converge. This is a significant
amount of time (3.2 ns for all 1600 snapshots) compared to
the total 13 ns used for the MD simulations of standard (and sc-)
MM/GBSA. Using minimisations instead of simulations, seems
to show even worse convergence. Most likely the explicit-solvent
and the implicit-solvent snapshots represent two distinct energy
minima that are not easily interconvertible. The results indicate
that MM/GBSA based on minimisations does not give the same
results as standard MM/GBSA based on MD simulations.

Most importantly, the present results show that the standard
MM/GB(PB)SA approach is inconsistent in that it uses snapshots
sampled with explicit water molecules, but then calculates
energies on these snapshots with an implicit-solvent model
without reweighting the snapshots. Our result shows that such
an approach gives results that are very different from the
consistent approach of using the same solvent model in both
the simulations and energy calculations. However, we do not
expect that the sc-MM/GBSA approach will be significantly more
accurate than standard MM/GBSA, because both approaches are
limited by other approximations inherent in the method.9,10,39

Recently, there has been quite some interest in performing
MM/GBSA-like calculations in which energies are calculated
with quantum-mechanical (QM) methods.40,41 Then, a similar
question arises whether the MD snapshots obtained with MM
methods are representative also of energy calculations with
QM. Experience from reaction energies indicates that MM and
QM potentials are so different that MM - QM reweighting
normally does not converge, unless the QM system is kept
fixed.42–44 In this paper, we have instead tried to obtain the
correct ensemble with short MD simulations or minimisations.
Unfortunately, it seems that a large number of MD steps are
needed for convergence (>1000), which would be prohibitive for
most QM applications.
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41 P. Söderhjelm, S. Genheden and U. Ryde, Quantum
mechanics in structure-based ligand design, in Protein–ligand
interactions, ed. H. Gohlke, Methods and principles in
medicinal chemistry, Wiley-VCH Verlag, Weinheim, 2012,
vol. 53, pp. 121–143.

42 R. P. Muller and A. Warshel, J. Phys. Chem. B, 1995, 99(17), 516.
43 T. H. Rod and U. Ryde, Phys. Rev. Lett., 2005, 94, 138302.
44 J. Heimdal and U. Ryde, Phys. Chem. Chem. Phys., 2012, 14,

12592–12604.

PCCP Paper

D
ow

nl
oa

de
d 

by
 L

un
d 

U
ni

ve
rs

ity
 o

n 
03

/0
5/

20
13

 1
5:

00
:1

4.
 

Pu
bl

is
he

d 
on

 0
3 

A
pr

il 
20

13
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
3C

P0
01

16
D

View Article Online

http://dx.doi.org/10.1039/c3cp00116d

